23.12.2021 - Deutsches Elektronen-Synchrotron DESY

Röntgenblick in die Wasserstoffproduktion

Analyse weist Weg zu haltbareren Iridium-Elektroden

Grüner Wasserstoff soll für die Energiewirtschaft der Zukunft eine zentrale Rolle spielen: Unter anderem kann er Erdöl und -gas als Energieträger ablösen und auch eine emissionsfreie Produktion von Stahl und Zement ermöglichen. Für eine effiziente Wasserstoffwirtschaft muss die Produktion des energiehaltigen Gases aber noch besser werden. Forscherinnen und Forscher von DESY, der Justus-Liebig-Universität Gießen, den Universitäten Lund und Kopenhagen sowie dem Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien haben an DESYs Röntgenlichtquelle PETRA III nun die kostspielige Abnutzung von Elektroden für die Wasserstoffproduktion untersucht. Die Analyse weist den Weg zu haltbareren Elektroden, wie das Team im Fachblatt „ACS Catalysis“ der Amerikanischen Chemischen Gesellschaft (ACS) berichtet.

Produziert wird grüner, also klimaneutraler Wasserstoff heute mit sogenannten Elektrolyseuren. Mit Hilfe von Strom aus erneuerbaren Energien spalten sie Wasser in seine Bestandteile Sauerstoff und Wasserstoff. Damit diese Molekülspaltung funktioniert, muss Strom durch eine reaktive saure Lösung geführt werden. Dazu werden sehr korrosionbeständige Elektroden verwendet, die zugleich als Katalysatoren dienen und die Reaktion entscheidend beschleunigen. Eines der Materialien, die dafür zum Einsatz kommen, ist das seltene Edelmetall Iridium: In vielen Elektrolyseuren sind die Anoden mit einer dünnen Schicht aus Iridiumoxid überzogen. Das Problem: Diese Beschichtungen nutzen sich im Laufe der Zeit ab und korrodieren. Das mindert die Haltbarkeit der Anlagen und verteuert die Produktionskosten.

Mit Hilfe der Röntgenstrahlung aus PETRA III nahmen die Forscherinnen und Forscher die möglichen Abnutzungsprozesse genauer unter die Lupe. Um dabei realitätsnahe Bedingungen zu schaffen, tauchten die Fachleute eine dünne Schicht aus Iridiumoxid in einen Elektrolyten und legten einen elektrischen Strom an. „Dann haben wir mit dem gebündelten Röntgenstrahl an der Strahlführung P21.2 über mehrere Stunden beobachtet, was passiert“, erläutert Ko-Autor Tim Weber von der Universität Gießen. „Auf der Basis der Messdaten konnten wir genauestens erfassen, ob und wie sich die Dicke und die Rauigkeit der Schicht verändern.“ Per Röntgenstrahl ließ sich der Elektrolyt mühelos durchdringen, ferner ist die Messmethode so schnell, dass sich auch rasche Strukturänderungen verfolgen ließen.

Das Besondere: Die untersuchten Iridiumoxid-Schichten hatten eine besonders gute und gleichmäßige Qualität, denn sie wurden an der Universität Gießen mit einem hochpräzisen Verfahren vom Team von Herbert Over gefertigt. Das Resultat: „Die fünf Nanometer dicke Schicht blieb während unserer Messungen praktisch konstant“, sagt Ko-Autor Vedran Vonk aus dem DESY-NanoLab. „Weder die Dicke noch die Kristallstruktur haben sich nennenswert verändert.“

Der Industrie liefern die Ergebnisse einen wichtigen Hinweis: Je besser und gleichmäßiger die Beschichtung mit Iridiumoxid gerät, umso stabiler und haltbarer sind die Anoden und umso wirtschaftlicher können die Elektrolyseure auf lange Sicht arbeiten. „Nur wenn wir es schaffen, die Korrosionsprozesse auf atomarer Skala zu verstehen, haben wir auch die Möglichkeit, nach Materialien Ausschau zu halten, die Iridium ersetzen können“, sagt Over, der die Untersuchung geleitet hat. Die vorliegende Studie an den geordneten, ultradünnen Iridiumoxid-Schichten ist ein wichtiger Schritt in diese Richtung.

Fakten, Hintergründe, Dossiers
  • Iridiumoxid
Mehr über Deutsches Elektronen-Synchrotron DESY
  • News

    Nanopartikel retten historische Gebäude

    Viele historische Gebäude wurden aus Sandstein gebaut, etwa der Wiener Stephansdom. Sandstein lässt sich leicht bearbeiten, hält aber der Verwitterung schlecht stand. Er besteht aus Sandkörnern, die relativ schwach aneinander gebunden sind, daher bröckeln im Lauf der Jahre immer wieder Teil ... mehr

    Express-Röntgenbilder von Mikrochips

    Eine neue Methode beschleunigt die Aufnahme von Röntgenbildern ausgedehnter Untersuchungsobjekte wie Mikrochips. Die innovative Technik ermöglicht es, relativ große Objekte in angemessener Zeit bis in den Nanometerbereich zu untersuchen. Das ist nicht nur für die Wissenschaft, sondern auch ... mehr

    Start-up Labs Bahrenfeld wachsen

    Der Hamburger Senat fördert die schnelle Erweiterung der Start-up Labs Bahrenfeld um 360 Quadratmeter mit 700.000 Euro. Insgesamt sollen auf dem DESY-Campus in unmittelbarer Nachbarschaft zu dem bestehenden Gebäude der Start-up Labs Bahrenfeld mindestens 25 Laborarbeitsplätze und 20 Büroarb ... mehr

  • Videos

    DESYs Röntgenlaser FLASH - High-Speed-Kamera für den Nanokosmos

    Wie arbeiten die Moleküle des Lebens? Wie funktionieren die Werkstoffe der Zukunft? Wie können wir effizienter Energie gewinnen und Ressourcen schonen? Fragen and FLASH, die High-Speed-Kamera für den Nanokosmos. mehr

    Teilchenzoo: Und nun?

    Mit dem extrem erfolgreichen Standardmodell der Teilchenphysik verstehen wir bislang nur rund 5% des Universums. Wie geht es weiter - Stringtheorie, Supersymmetrie, DESY-Physiker Georg Weiglein und Gudrid Moortgat-Pick diskutieren die großen offenen Fragen der Teilchenphysik. mehr

    Teilchenzoo: Photonen, Gluonen und andere Kräfteteilchen

    "Die vier Kräfte" - das ist kein Gericht aus dem Chinarestaurant, sondern das sind die vier Grundkräfte der Natur: die starke, die schwache, die elektromagnetische und die Schwerkraft. DESY-Doktorand Marc Wenskat erklärt ihre Wechselwirkungsteilchen und zeigt dabei, dass ein kleiner Magnet ... mehr

Mehr über Justus-Liebig-Universität Gießen
Mehr über Lund University
  • News

    Durchbruch bei der Umwandlung von CO2 in Kraftstoff mithilfe von Sonnenenergie

    Ein Forschungsteam unter der Leitung der Universität Lund in Schweden hat gezeigt, wie Kohlendioxid mit Hilfe fortschrittlicher Materialien und ultraschneller Laserspektroskopie durch Sonnenenergie in Kraftstoff umgewandelt werden kann. Dieser Durchbruch könnte ein wichtiges Puzzlestück für ... mehr

    Turbo für Materialforschung

    Ein neuer Algorithmus soll dabei helfen, bislang unbekannte Materialverbindungen auszumachen. Entwickelt wurde er von einem Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Friedrich-Schiller-Universität Jena und der Universität Lund in Schweden. Die Forschenden konzipierten e ... mehr

    Perowskit-Pferde in 2D: Ein neues Bild der Bleihalogenid-Perowskite

    In einer gemeinsamen experimentellen und theoretischen Arbeit zwischen der Universität Lund (Schweden), der Russischen Akademie der Wissenschaften (Russland) und des Center for Advancing Electronics Dresden an der TU Dresden (Deutschland) entwickelten Forscher eine neuartige spektroskopisch ... mehr

Mehr über University of Copenhagen
Mehr über Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien