23.12.2021 - Deutsches Elektronen-Synchrotron DESY

Röntgenblick in die Wasserstoffproduktion

Analyse weist Weg zu haltbareren Iridium-Elektroden

Grüner Wasserstoff soll für die Energiewirtschaft der Zukunft eine zentrale Rolle spielen: Unter anderem kann er Erdöl und -gas als Energieträger ablösen und auch eine emissionsfreie Produktion von Stahl und Zement ermöglichen. Für eine effiziente Wasserstoffwirtschaft muss die Produktion des energiehaltigen Gases aber noch besser werden. Forscherinnen und Forscher von DESY, der Justus-Liebig-Universität Gießen, den Universitäten Lund und Kopenhagen sowie dem Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien haben an DESYs Röntgenlichtquelle PETRA III nun die kostspielige Abnutzung von Elektroden für die Wasserstoffproduktion untersucht. Die Analyse weist den Weg zu haltbareren Elektroden, wie das Team im Fachblatt „ACS Catalysis“ der Amerikanischen Chemischen Gesellschaft (ACS) berichtet.

Produziert wird grüner, also klimaneutraler Wasserstoff heute mit sogenannten Elektrolyseuren. Mit Hilfe von Strom aus erneuerbaren Energien spalten sie Wasser in seine Bestandteile Sauerstoff und Wasserstoff. Damit diese Molekülspaltung funktioniert, muss Strom durch eine reaktive saure Lösung geführt werden. Dazu werden sehr korrosionbeständige Elektroden verwendet, die zugleich als Katalysatoren dienen und die Reaktion entscheidend beschleunigen. Eines der Materialien, die dafür zum Einsatz kommen, ist das seltene Edelmetall Iridium: In vielen Elektrolyseuren sind die Anoden mit einer dünnen Schicht aus Iridiumoxid überzogen. Das Problem: Diese Beschichtungen nutzen sich im Laufe der Zeit ab und korrodieren. Das mindert die Haltbarkeit der Anlagen und verteuert die Produktionskosten.

Mit Hilfe der Röntgenstrahlung aus PETRA III nahmen die Forscherinnen und Forscher die möglichen Abnutzungsprozesse genauer unter die Lupe. Um dabei realitätsnahe Bedingungen zu schaffen, tauchten die Fachleute eine dünne Schicht aus Iridiumoxid in einen Elektrolyten und legten einen elektrischen Strom an. „Dann haben wir mit dem gebündelten Röntgenstrahl an der Strahlführung P21.2 über mehrere Stunden beobachtet, was passiert“, erläutert Ko-Autor Tim Weber von der Universität Gießen. „Auf der Basis der Messdaten konnten wir genauestens erfassen, ob und wie sich die Dicke und die Rauigkeit der Schicht verändern.“ Per Röntgenstrahl ließ sich der Elektrolyt mühelos durchdringen, ferner ist die Messmethode so schnell, dass sich auch rasche Strukturänderungen verfolgen ließen.

Das Besondere: Die untersuchten Iridiumoxid-Schichten hatten eine besonders gute und gleichmäßige Qualität, denn sie wurden an der Universität Gießen mit einem hochpräzisen Verfahren vom Team von Herbert Over gefertigt. Das Resultat: „Die fünf Nanometer dicke Schicht blieb während unserer Messungen praktisch konstant“, sagt Ko-Autor Vedran Vonk aus dem DESY-NanoLab. „Weder die Dicke noch die Kristallstruktur haben sich nennenswert verändert.“

Der Industrie liefern die Ergebnisse einen wichtigen Hinweis: Je besser und gleichmäßiger die Beschichtung mit Iridiumoxid gerät, umso stabiler und haltbarer sind die Anoden und umso wirtschaftlicher können die Elektrolyseure auf lange Sicht arbeiten. „Nur wenn wir es schaffen, die Korrosionsprozesse auf atomarer Skala zu verstehen, haben wir auch die Möglichkeit, nach Materialien Ausschau zu halten, die Iridium ersetzen können“, sagt Over, der die Untersuchung geleitet hat. Die vorliegende Studie an den geordneten, ultradünnen Iridiumoxid-Schichten ist ein wichtiger Schritt in diese Richtung.

Fakten, Hintergründe, Dossiers
  • Iridiumoxid
Mehr über Deutsches Elektronen-Synchrotron DESY
  • News

    Kontrolle der molekularen Händigkeit mit Hilfe von Licht

    Forschende der Freien Universität Berlin, des Forschungszentrums DESY in Hamburg, der Christian-Albrechts-Universität Kiel und der Kansas State University haben in einer neuen Studie gezeigt, wie einem Molekül, dessen Atome zunächst alle in einer Ebene liegen, mit Hilfe von Licht eine besti ... mehr

    Smarte Geschenke packen sich bald selbst aus

    Eine schwedisch-deutsche Forschungsgruppe hat mit Hilfe von PETRA III ein neues Zellulose-Polymermaterial entwickelt, das durch Feuchtigkeit gezielt zu Bewegungen animiert werden kann und damit ein ideales Grundmaterial für programmierbare Aktuatoren ist. Dazu ist das Komposit-Material auch ... mehr

    Seltene Einblicke in das Wachstum von Nanopartikeln

    Wie genau wachsen Nanopartikel in Lösungen? Forscherinnen und Forscher der Universität Hamburg und von DESY konnten diesen Prozess mit DESYs Röntgenlichtquelle PETRA III erstmals in Echtzeit verfolgen. Im Fachblatt „Nature Communications“ berichten sie über ihre Beobachtungen mit Hilfe der ... mehr

  • Forschungsinstitute

    Deutsches Elektronen-Synchrotron DESY

    DESY ist eines der weltweit führenden Beschleunigerzentren und gehört zur Helmholtz-Gemeinschaft. Bei DESY werden große Teilchenbeschleuniger entwickelt, gebaut und betrieben, um damit die Struktur der Materie zu erforschen. Das breit gefächerte, international ausgerichtete Forschungsspektr ... mehr

Mehr über Justus-Liebig-Universität Gießen
Mehr über Lund University
  • News

    Durchbruch bei der Umwandlung von CO2 in Kraftstoff mithilfe von Sonnenenergie

    Ein Forschungsteam unter der Leitung der Universität Lund in Schweden hat gezeigt, wie Kohlendioxid mit Hilfe fortschrittlicher Materialien und ultraschneller Laserspektroskopie durch Sonnenenergie in Kraftstoff umgewandelt werden kann. Dieser Durchbruch könnte ein wichtiges Puzzlestück für ... mehr

    Turbo für Materialforschung

    Ein neuer Algorithmus soll dabei helfen, bislang unbekannte Materialverbindungen auszumachen. Entwickelt wurde er von einem Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Friedrich-Schiller-Universität Jena und der Universität Lund in Schweden. Die Forschenden konzipierten e ... mehr

    Perowskit-Pferde in 2D: Ein neues Bild der Bleihalogenid-Perowskite

    In einer gemeinsamen experimentellen und theoretischen Arbeit zwischen der Universität Lund (Schweden), der Russischen Akademie der Wissenschaften (Russland) und des Center for Advancing Electronics Dresden an der TU Dresden (Deutschland) entwickelten Forscher eine neuartige spektroskopisch ... mehr

Mehr über University of Copenhagen
Mehr über Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien