17.02.2022 - Julius-Maximilians-Universität Würzburg

Nachhaltige Chemie auf Basis von Holz

Materialien für Solarzellen, Leuchtdioden und andere Anwendungen der organischen Elektronik möglichst nachhaltig produzieren

Manche Wanderer tragen ein kleines Solarkraftwerk mit sich herum: An ihrem Rucksack ist eine Folie befestigt, die Sonnenlicht in Strom umwandelt. So können sie unterwegs ihr Handy aufladen. Flexible, dünne und leichte Solarpanels lassen sich auch auf Outdoor-Kleidung anbringen oder auf gewölbte Oberflächen kleben – etwa auf die Dächer von Wohnmobilen.

Derartige Solarzellen fangen die Energie der Sonne nicht mit kristallinem Silizium ein, sondern mit speziellen organischen Materialien. Leider werden diese Materialien bislang aus Erdöl oder Erdgas hergestellt – und das ist nicht im Sinne der Nachhaltigkeit.

Die Wissenschaft sucht darum nach Alternativen. Das Team um Chemieprofessor Holger Helten von der Julius-Maximilians-Universität (JMU) Würzburg hat dabei den nachwachsenden Rohstoff Holz im Blick. Aus Holz lassen sich Furane gewinnen, und diese ringförmigen Moleküle eignen sich sehr gut für die organische Elektronik: Sie kommen für Solarzellen, Leuchtdioden, Displays oder elektronische Schaltkreise in Frage.

Bor stabilisiert Polymere auf Furanbasis

Entscheidend ist, dass Materialien auf Furanbasis für viele Anwendungen wesentlich bessere Eigenschaften mitbringen als die meisten bislang in der organischen Elektronik verwendeten Materialien. Verglichen mit Standardmaterialien auf Thiophenbasis haben sie unter anderem eine stärkere Leuchtkraft und sind besser löslich – das vereinfacht ihre Verarbeitung und spart Lösungsmittel. Außerdem sind Furane biologisch abbaubar, weshalb sich solche Materialien vermutlich recyceln lassen.

Leider sind viele Materialien auf Furanbasis sehr labil; in Anwesenheit von Sauerstoff und Licht zerfallen sie schnell. Doch sie lassen sich stabilisieren, wenn man sie mit dem Element Bor verknüpft. „Das ergibt Verbindungen, die bis zu 300 Grad Celsius aushalten und über Monate hinweg von Licht unbeschadet bleiben“, sagt der Würzburger Chemiker Maximilian Fest, der seine Doktorarbeit bei Professor Helten macht.

Umweltschonende Syntheseverfahren im Einsatz

Die Erforschung borhaltiger Polymere steht noch in den Anfängen. Der JMU-Doktorand synthetisiert verschiedene neue Varianten aus Bor und Furanen und charakterisiert ihre Eigenschaften. Dabei setzt er auf umweltfreundliche Synthesemethoden, die in der Arbeitsgruppe seines Professors entwickelt werden.

Holger Helten erklärt, warum diese Verfahren die Umwelt schonen: „Bei der Polymerisation von Bor und Furanen, aber auch bei der Synthese rein organischer Polymere, entstehen häufig sehr bedenkliche Abfallprodukte. Oft sind das organische Zinnverbindungen, die für Mensch und Umwelt hochtoxisch sind. Bei unserem Ansatz sind keine Metalle nötig und es entstehen keine toxischen Abfälle.“

Sein Team will diese Syntheseverfahren weiter verbessern, sie noch nachhaltiger machen. Ein Ziel dabei ist es, die Zahl der Reaktionsschritte zu verringern – das spart Energie und Reagenzien.

Gefördert von der Bundesstiftung Umwelt

Bei all diesen Pluspunkten in Sachen Nachhaltigkeit ist es nicht verwunderlich, dass die Deutsche Bundesstiftung Umwelt das Dissertationsprojekt von Maximilian Fest fördert: Sie gewährt ihm über 2,5 Jahre ein Stipendium von monatlich 1.500 Euro plus Sachmittel.

Der Einbau von Bor in furanbasierte Polymere eröffnet über die organische Elektronik hinaus viele weitere Möglichkeiten. „Wir können damit zum Beispiel Sensoren bauen, die toxische Amine und andere Stoffe nachweisen“, sagt Professor Helten. Auch als Katalysatoren für chemische Reaktionen oder als Elektrodenmaterialien für Lithium-Ionen-Akkus kommen diese Polymere in Frage.

Fakten, Hintergründe, Dossiers
  • Nachhaltige Produktion
  • nachhaltige Chemie
  • Nachhaltigkeit
  • Displays
  • elektronische Schaltkreise
  • Bor
Mehr über Uni Würzburg
  • News

    Künstliches Enzym spaltet Wasser

    Ein Team aus der Chemie präsentiert einen enzymähnlichen molekularen Katalysator für die Wasseroxidation. Die Menschheit steht vor einer zentralen Herausforderung: Sie muss den Übergang zu einer nachhaltigen und kohlendioxidneutralen Energiewirtschaft bewältigen. Wasserstoff gilt als vielve ... mehr

    Licht-Motoren für Mikrodrohnen

    Mikrometergroße Drohnen nur mit Licht anzutreiben und präzise zu steuern: Das ist Physikern der Universität Würzburg erstmals gelungen. Ihre Mikrodrohnen sind deutlich kleiner als rote Blutkörperchen. Ein Laserpointer in der Hand produziert keine merklichen Rückstoß-Kräfte, wenn er „abgefeu ... mehr

    Erneuter Erfolg für NanoStruct

    Women TechEU ist eine neue Initiative der Europäischen Union (EU). Das Programm unterstützt Start-up-Unternehmen, die in der Hochtechnologie tätig sind und von Frauen geführt werden. Die Förderung beinhaltet eine Finanzhilfe von je 75.000 Euro, um die ersten Schritte des Innovationsprozesse ... mehr

  • q&more Artikel

    Multinationale Medikamente

    Während in den 90er-Jahren des letzten Jahrhunderts 80 % aller Wirkstoffe und Hilfsstoffe in Europa bzw. in den USA produziert wurden, werden heute nahezu alle Ausgangsstoffe zur Herstellung von Arzneimittel in China und Indien hergestellt. Dies gilt nicht nur für die einzelnen Stoffe, sond ... mehr

    Hightech im Bienenvolk

    Vitale Bienenvölker sind von höchster Relevanz für die Aufrechterhaltung der natürlichen Diversität von Blütenpflanzen und die globale pflanzliche Nahrungsmittelproduktion, die zu 35 % von Insektenbestäubern abhängt, unter denen die Honigbiene (Apis mellifera) die überragende Rolle spielt. ... mehr

  • Autoren

    Prof. Dr. Jürgen Tautz

    Jg. 1949, studierte Biologie, Geographie und Physik an der Universität Konstanz und promovierte dort über ein sinnesökologisches Thema. Nach Arbeiten zur Bioakustik von Insekten, Fischen und Fröschen gründete er 1994 die BEEgroup an der Universität Würzburg, die sich mit Grundlagenforschung ... mehr

    Prof. Dr. Ulrike Holzgrabe

    Ulrike Holzgrabe (Jg. 1956) studierte Chemie und Pharmazie in Marburg und Kiel. Nach Approbation und Promotion folgte die Habilitation für Pharmazeutische Chemie 1989 ­in Kiel. Sie hatte eine Professur in Bonn (1990-1999), lehnte C4-Rufe nach Tübingen und Münster ab und folgte dem Ruf nach ... mehr