15.08.2022 - Albert-Ludwigs-Universität Freiburg

Wichtiger Meilenstein auf dem Weg zur Übergangsmetall-Katalyse mit Aluminium

Chemiker*innen gelingt die Synthese eines kationischen, niederwertigen Aluminium-Komplexsalzes via Metathese

Den Chemiker*innen Philipp Dabringhaus, Julie Willrett und Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist die Synthese des niedervalenten kationischen Aluminiumkomplexes [Al(AlCp*)3]+ durch eine Metathese-Reaktion gelungen. Ihre Forschungsarbeit stellt das Team im Journal Nature Chemistry vor.

„In der Chemie sind kationische niedervalente Aluminiumverbindungen aufgrund ihrer potenziellen übergangsmetallähnlichen ambiphilen Reaktivität sehr begehrt. Zahlreiche bisherige Versuche zur Synthese von kationischen, niedervalenten Aluminiumverbindungen durch oxidative oder reduktive Verfahren blieben aber weitgehend erfolglos“, erklärt Krossing. Bisher gebe es nur ein Beispiel für eine kationische, niedervalente Aluminiumverbindung, die jedoch nicht durch eine rationale Synthese hergestellt werden kann. „Wir zeigen jetzt, dass es mit Metathese doch einen unerwartet leichten Zugang zu niederwertigen Aluminiumkomplexen gibt“, so Krossing. Bei der Metathese werden Teilstrukturen zwischen den Reaktionspartnern einfach ausgetauscht.

Aluminium als günstigere Alternative für die Katalyse

Die Freiburger Chemiker*innen stellten das Salz [Al(AlCp*)3]+[Al(OC{CF3)3}4]– aus dem Schnöckel-Tetramer (AlCp*)4 her, in dem Aluminium bereits in der Oxidationsstufe +1 vorliegt. Das (AlCp*)4 reagierte mit Li[Al{OC(CF3)3}4] und das Reaktionsgemisch färbte sich sofort von gelb nach rot. Bei der Kristallisation der Reaktionsmischung erhielten die Wissenschaftler*innen das [Al(AlCp*)3]+[Al(OC{CF3)3}4]–-Salz als dunkelviolette Kristalle. „Röntgeno-graphische, UV-spektrometrische und rechnerische Untersuchungen zeigen das Vorliegen der dimeren Struktur sowohl im festen Zustand als auch in Lösung bei hoher Konzentration und niedriger Temperatur an, bei niedriger Konzentration und Raumtemperatur bildet sich jedoch das Monomer. Dies weist klar auf eine ambiphile Reaktivität des Kations hin“, so Dabringhaus.

„Folglich kann dieses Salz potenziell als Baustein für ein [:Al(L)3]+-Salz verwendet werden, das aufgrund seines kationischen Charakters in der Lage sein könnte, reversible oxidative Additionen und reduktive Eliminierungen von kleinen Molekülen durchzuführen“, erklärt Krossing. „Damit sind wir einen Schritt näher an unserem Fernziel, die Katalyse – die momentan mit teuren und seltenen Übergangsmetallen gemacht wird – langfristig mit Aluminium hinzubekommen. Aluminium ist das zweihäufigste Element in der Erdkruste und dazu prinzipiell in der Lage, wie unsere Arbeit zeigt. Aber bis unsere Forschung dazu Anwendung findet, dauert es wohl leider noch mindestens 20 Jahre.“

Fakten, Hintergründe, Dossiers
Mehr über Uni Freiburg
  • News

    Neue Oxidationsstufe von Rhodium entdeckt

    Mayara da Silva Santos, Doktorandin am Physikalischen Institut der Universität Freiburg, hat eine neue Oxidationsstufe des Rhodiums entdeckt. Das chemische Element findet als eines der katalytisch wichtigen Platinmetalle zum Beispiel in Autokatalysatoren Verwendung. Rhodium ist eigentlich b ... mehr

    Neues Reagenz für die Deelektronierung entwickelt

    Freiburger Forschenden ist es gelungen, mehrkernige Übergangsmetallcarbonyle durch typische anorganische Oxidationsmittel in ihre homoleptischen Komplexkationen zu überführen. In ihrer Arbeit zeigt das Forschungsteam aus Malte Sellin, Christian Friedmann und Prof. Dr. Ingo Krossing vom Inst ... mehr

    Neue Einblicke zu Anordnung und Mobilität von Molekülen auf Nanopartikel-Oberfläche

    Die Bindungskonfiguration von Molekülen mit einer Oberfläche ist von zentraler Rolle in chemischen Reaktionen. Die Möglichkeit, Bindungskonfigurationen in isolierten Nanosystemen zu untersuchen, ist deshalb von hohem Interesse. Einem Freiburger Forscherteam um Dr. Lukas Bruder und Prof. Dr. ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr