Teamarbeit bei Katalysatorpartikeln
Dies konnten nun Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) unter Leitung von Jörg Libuda, Professor für Physikalische Chemie, im Rahmen eines internationalen Kooperationsprojektes mit Arbeitsgruppen aus Barcelona, Prag und Triest zeigen. Die Ergebnisse dieses Projektes, das unter anderem auch durch den Erlanger Excellenzcluster Engineering of Advanced Materials unterstützt wird, wurden in der Zeitschrift Nature Materials veröffentlicht.
„Black magic“ in der Katalysator-Produktion
Heterogen katalysierte Prozesse spielen eine entscheidende Rolle bei der energie- und rohstoffeffizienten Produktion der meisten industriell hergestellten Chemikalien, ebenso wie bei zukünftigen Schlüsseltechnologien in der Energietechnik und der Umwelttechnik. Mit dem Wort „heterogen“ wird ausgedrückt, dass der Katalysator und die reagierenden Stoffe in unterschiedlichen Aggregatzuständen vorliegen: als Feststoff, Gas oder Flüssigkeit. Die hier eingesetzten Materialien sind meist hochkomplex. Einblicke in die Funktionsweise solcher Materialien zu erhalten, erweist sich daher als außerordentlich schwierig. Aus diesem Grunde werden heterogene Katalysatoren in den meisten Fällen rein empirisch – durch Versuch und Irrtum – optimiert, weshalb deren Herstellung in vielen Fällen als „schwarze Magie“ umschrieben wird.
Dem internationalen Forscherteam ist es nun gelungen, vereinfachte Modellsysteme für solche Katalysatoren herzustellen. Diese gestatten auf der einen Seite Untersuchungen mittels modernster experimenteller Verfahren, zum Beispiel mittels sogenannter Synchrotronstrahlung, auf der anderen Seite aber auch die Anwendung moderner theoretischer, sogenannter quantenmechanischer Methoden. Zusammen bieten Theorie und Experiment die Möglichkeit, detaillierte Einblicke in die Funktionsweise dieser komplexen Materialien zu erhalten.
Dabei zeigte es sich, dass es gerade diese komplexe Struktur ist, die neue Eigenschaften entstehen lässt: Die Katalysatoren bestehen aus Oxid- und Metallpartikeln, die nur wenige Nanometern groß sind, aber in engen Kontakt gebracht werden müssen. Die besondere chemische Reaktivität entsteht dann durch Zusammenarbeit der unterschiedlichen Komponenten. Nur wenn sie in Form kleiner Nanopartikel vorliegen, können diese untereinander hochreaktive Sauerstoffspezies austauschen und dadurch völlig neue Reaktionswege eröffnen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.