Meine Merkliste
my.chemie.de  
Login  

ERC-Grant für Quantenphysiker Jörg Schmiedmayer

Mit Atom-Chips auf der Suche nach ganz besonderen Quanten-Zuständen: TU-Physiker Jörg Schmiedmayer wird mit einem ERC-Advanced Grant ausgezeichnet.

28.01.2013

TU Wien, Bernd Euring

Jörg Schmiedmayer

TU Wien

Auf einem AtomChip (oben) werden ultrakalte Atomwolken (rot) erzeugt. Die Wolken überlagern sich, wodurch ein geordnetes Materiewellen-Interferenzbild entsteht (unten).

TU Wien

Vakuumkammer, in der das Kondensat erzeugt wird.

TU Wien

Um die ultrakalten Atomwolken zu erzeugen, wird ein komplizierter optischer Aufbau benötigt.

TU Wien

3D-Darstellung der Inferferenzstreifen mit hoher (rot) und niedriger (blau) Atomdichte. Die Zeit nimmt von unten nach oben zu. Zu Beginn, kurz nach der Teilung der Atomwolke, formen die Interferenzstreifen gerade Linien – was einem hohen Grad an Ordnung im System entspricht. Im Lauf der Zeit werden die Formen ungeordneter, entsprechend dem Verlust an Information.

Mit seinen Forschungen an speziellen Quantenzuständen zwischen Ordnung und Unordnung hat Prof. Jörg Schmiedmayer bereits viel Aufsehen erregt: Ultrakalte Atomwolken mit einem hohen Grad an Ordnung streben mit der Zeit in ein ungeordnetes Temperatur-Gleichgewicht. Auf dem Weg dorthin nehmen sie aber einen erstaunlich stabilen Zwischenzustand ein. Mit einem ERC Advanced Grant des European Research Council, einem der begehrtesten europäischen Förderpreise, kann er diesem Geheimnis und anderen Nicht-Gleichgewichts-Phänomenen in Quanten-Vielteilchensystemen nun auf den Grund gehen.

Wie schmelzen Quanten?

Übergänge in ein thermisches Gleichgewicht erleben wir jeden Tag – etwa wenn ein Eiszapfen sich der warmen Umgebungstemperatur anpasst und schmilzt. Dabei nimmt die Entropie (ein Maß für die Unordnung im System) zu, und dem System geht Information verloren. Auch die ultrakalten Bose-Einstein-Kondensate, die am Vienna Center for Quantum Science and Technology, (VCQ) bzw. am Atominstitut der TU Wien untersucht werden, streben in ein thermisches Gleichgewicht. Sie wechseln dabei von einem Zustand, der nur quantenphysikalisch beschrieben werden kann, in einen Zustand, in dem die Quanten-Eigenschaften der Teilchen keine große Rolle mehr spielen. Dazwischen findet sich allerdings ein überraschend stabiles Zwischenstadium – der sogenannte „prä-thermalisierte Zustand“.

„Die Ordnung im System nimmt zunächst rasch ab, bleibt dann aber im prä-thermalisierten Zustand praktisch konstant“, erklärt Jörg Schmiedmayer. „Ein Teil der Quanteninformation ist dabei noch nachweisbar, die Atom-Wolke hat noch nicht vergessen, dass sie aus einem extrem geordneten Bose-Einstein-Kondensat hervorgegangen ist.“ Während der anfängliche Verlust an Quanten-Ordnung innerhalb weniger Millisekunden stattfindet, bleibt der prä-thermalisierte Zustand danach über mehr als eine Zehntelsekunde erstaunlich stabil.

Der Urknall und der Quantencomputer

Schmiedmayer hält dieses Auftreten eines Zwischenzustands zwischen quantenphysikalischer Ordnung und klassischer Unordnung für ein sehr allgemeines Phänomen, das auch in anderen Systemen zu finden sein sollte. „Prä-thermalisierte Zustände werden in Schwerionenkollisionen bei extrem hohen Energien (etwa am LHC, CERN) vermutet und es könnte sein, dass auch die kosmische Hintergrundstrahlung einem prä-thermalisierten Zustand entstammt, den das Universum kurz nach dem Urknall einnahm“, erklärt Schmiedmayer. In der Quantenphysik könnte der prä-thermalisierte Zustand für viele Anwendungen interessant sein. Will man etwa Daten in einem Quanten-Computer speichern oder Berechnungen durchführen, erzeugt man zwangsläufig einen Ungleichgewichts-Zustand, der in ein thermisches Gleichgewicht strebt und damit zerstört wird.

Große Auszeichnung des Europäischen Forschungsrates

Für seine Forschungen erhielt Schmiedmayer nun den Förderpreis der europäischen Forschungslandschaft, den ERC Advanced Grant des European Research Council. Mit rund zwei Millionen Euro wird er in den nächsten fünf Jahren weitere Experimente zu Relaxation und Nicht-Gleichgewichtsdynamik in Quanten Systemen durchführen können. „Wir wollen mit unseren Experimenten dazu beitragen, dass eine einheitliche, grundlegende Theorie für nichtgleichgewichts-Systeme gefunden wird, die auf ganz unterschiedliche Quanten-Systeme angewandt werden kann“, hofft Schmiedmayer.

Fakten, Hintergründe, Dossiers
  • Förderpreise
  • Technische Universität Wien
  • Österreichische Aka…
Mehr über TU Wien
  • News

    Weltrekord-Material macht aus Wärme Elektrizität

    Ein neuartiges Material erzeugt aus Temperaturunterschieden sehr effizient elektrischen Strom. Damit können sich Sensoren und kleine Prozessoren kabellos selbst mit Energie versorgen. Thermoelektrische Materialien können Wärme direkt in elektrische Energie umwandeln. Das liegt am sogenannte ... mehr

    Rätsel gelöst: Das Quantenleuchten dünner Schichten

    Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden. Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolf ... mehr

    Elastische Nano-Schichten für bessere Li-Ionen-Akkus

    An der TU Wien wurde eine Messmethode entwickelt, durch die es nun möglich werden soll, die Speicherkapazität von Lithium-Ionen-Akkus deutlich zu vergrößern. Sie liefern Energie für unsere Elektroautos, für unsere Handys und Laptops: Mit Lithium-Ionen-Akkus haben wir Tag für Tag zu tun. Es ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

Mehr über Österreichische Akademie der Wissenschaften
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.