Schneller Detektor für riesigen Wellenlängenbereich

13.08.2013 - Deutschland

Freie-Elektronen-Laser sind äußerst vielseitige Forschungsgeräte, denn mit ihren intensiven und superkurzen Lichtblitzen kann man neue Materialien oder auch biologische Moleküle besonders gut untersuchen und so bisher unbekannte Effekte beobachten. Für gepulste Laser im fernen Infrarot, dem sogenannten Terahertz-Bereich, haben Wissenschaftler im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) einen robusten und schnellen Detektor konzipiert, der mit hoher Genauigkeit die Ankunft eines Terahertz-Pulses messen kann. Mit den in der Fachzeitschrift „Applied Physics Letters“ publizierten Ergebnissen liefern die Forscher zugleich eine Bauanleitung für ihren Detektor.

HZDR/Frank Bierstedt

Das neuartige Detektorsystem überwacht die starken Terahertz-Blitze an den beiden Freie-Elektronen-Lasern im HZDR.

HZDR/Frank Bierstedt

Physiker Dr. Wolfgang Seidel bei Einstellungsarbeiten am Freie-Elektronen-Laser im HZDR.

Martin Mittendorff

Zwei Laserpulse treffen auf den Detektor mit der Graphen-Flocke im Zentrum und der ringförmig angeordneten Antenne. Für Pump-Probe-Experimente müssen die Pulse äußerst genau aufeinander abgestimmt werden.

HZDR/Frank Bierstedt
HZDR/Frank Bierstedt
Martin Mittendorff

Jeder einzelne Puls vom Freie-Elektronen-Laser (FEL) im Helmholtz-Zentrum Dresden-Rossendorf besteht aus unzähligen Lichtteilchen. Für viele Experimente ist es extrem wichtig, die genaue Ankunftszeit dieser Lichtpulse zu kennen. Die Zeitdauer zwischen den nur zehn Pikosekunden, also zehn billionstel Sekunden, kurzen Lichtblitzen beträgt allerdings lange 77.000 Pikosekunden. Auf räumliche Größenvorstellungen übertragen entspräche die Distanz zwischen zwei Pulsen knapp acht Kilometer. Diese Strecke gilt es zu durchsuchen, um die Ankunftszeit eines Lichtpulses, der in diesem Vergleich gerademal einen Meter lang wäre, zu bestimmen.

Gemeinsam mit Wissenschaftlern der Universität Regensburg gelang es dem Physiker Martin Mittendorff und seinen Kollegen vom HZDR, einen zuverlässigen Detektor für die Zeitmessung an Freie-Elektronen-Lasern im Terahertz-Bereich zu entwickeln, zu bauen und zu testen. Diese Technik kann an allen vergleichbaren FELs eingesetzt werden. Sie basiert auf einer winzigkleinen Flocke aus Graphen, einem Material, um das ein regelrechter Forschungsboom entstanden ist, seit seine Entdeckung im Jahr 2010 mit einem Nobelpreis belohnt wurde. Die Liste der Anwendungen des für neue Technologien wie geschaffenen Werkstoffs – einer Schicht aus Kohlenstoff, die genau eine Atomlage dick ist – wird dabei immer länger. Graphen ist zugleich dünn, transparent und stabil, es kann Licht im unsichtbaren Infrarotbereich absorbieren, und die Elektronen können sich sehr schnell durch das Material bewegen.

„Die Eigenschaft des Graphens, Lichtteilchen in einem sehr großen Wellenlängenbereich zu absorbieren, war die Voraussetzung für unseren robusten und auch bei Zimmertemperatur einsatzbereiten Detektor. Die große Beweglichkeit der Elektronen im Graphen ermöglicht dabei die hohe Schnelligkeit“, erläutert Martin Mittendorff vom HZDR. Um die Lichtpulse auf die kaum bleistiftspitzengroße Flocke zu lenken, wird zudem eine spezielle Antenne benötigt. Nachdem das Detektor-Konzept feststand, fertigte der Physiker Josef Kamann in der Arbeitsgruppe von Professor Dieter Weiss an der Universität Regensburg den ersten Prototypen. Bei allen Tests am Freie-Elektronen-Laser des HZDR erwies sich der Detektor als schnell und beständig.

Bislang war die Abstimmung der Laserpulse mit Schwierigkeiten verbunden, da es keine einfachen und schnellen Detektoren für FEL-Strahlung im Terahertz-Bereich gab. Insbesondere sind die meisten schnellen Detektoren auf einen engen Wellenlängenbereich limitiert und nicht, wie der Detektor auf Graphen-Basis aus dem HZDR, für große Teile des mittleren und fernen Infrarotbereichs einsetzbar. Martin Mittendorff und seine Kollegen arbeiten nun an einer Weiterentwicklung ihres Systems, das einen noch größeren Wellenlängenbereich abdecken soll, angefangen von ultraviolettem Licht bis hin zum fernen Infrarot.

Vor allem bei sogenannten Pump-Probe-Experimenten profitieren die Forscher enorm von dem neuen Gerät, denn hierfür benötigen sie Licht aus zwei unterschiedlichen Laserquellen, die sie supergenau aufeinander abstimmen müssen. Soll beispielsweise ein vielversprechender Halbleiter für optoelektronische Anwendungen optimiert werden, so kann man die Elektronen darin mit einem ersten Laser anregen und danach mit einem zweiten Laser beobachten, wie schnell sie aus dem angeregten Energiezustand in den Ursprungszustand zurückkehren. Vielfältige Einsatzmöglichkeiten für das neu entwickelte Detektorsystem bietet das ELBE-Zentrum für Hochleistungs-Strahlenquellen in Rossendorf, denn hier sind unter einem Dach zwei Freie-Elektronen-Laser (FELBE) mit Terahertz- bzw. Infrarotstrahlung sowie die neuartige TELBE-Quelle vereint, die den im HZDR verfügbaren Spektralbereich der Terahertz-Strahlung in den nächsten Jahren erheblich erweitern soll.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!