24.04.2014 - Technische Universität Wien

Laserpulse ermöglichen die Steuerung chemischer Prozesse

Normalerweise laufen chemische Reaktionen ganz von selbst ab – ganz ähnlich wie eine Kugel immer nach unten rollt. Doch man kann chemische Reaktionen auch gezielt steuern. An der TU Wien verändert man mit Laserpulsen im Femtosekunden-Bereich die Verteilung der Elektronen im Molekül. Weil dieser Eingriff so extrem kurz ist, hat er zunächst kaum einen Einfluss auf die Atomkerne, die viel träger sind als die Elektronen. Trotzdem werden durch die gezielte Störung der Elektronenverteilung chemische Vorgänge eingeleitet und die Atomkerne letztlich voneinander getrennt. Die Eigenschaften des Laserpulses bestimmen, welche chemischen Endprodukte schließlich entstehen.

Neue Form des Eingriffs in chemische Abläufe

In der Chemie kann man sich zwar aussuchen, welche Moleküle man miteinander in Kontakt bringt – doch zu welcher Reaktion es dann tatsächlich kommt, hängt von den beteiligten Molekülen und eventuell von der Umgebungstemperatur ab. Den Ablauf der Reaktion selbst kann man normalerweise nicht direkt beeinflussen. Ein Forschungsteam vom Institut für Photonik der TU Wien konnte nun aber die Aufspaltung von Kohlenwasserstoffen wie Ethylen (C2H4) oder Acetylen (C2H2) in kleinere Bruchstücke mit Laserpulsen gezielt herbeiführen.

„Wir verwenden dazu zwei verschiedene Laserpulse“, erklärt Markus Kitzler. „Der erste Laserpuls dauert etwa 50 Femtosekunden und versetzt die Moleküle in unterschiedlich schnelle Drehung.“ Nach kurzer Zeit haben sich dann die Moleküle alle in ungefähr derselben Richtung ausgerichtet – dann folgt der zweite Laserpuls, der mit weniger als fünf Femtosekunden nicht einmal zwei Lichtschwingungen dauert. Dieser Puls ändert den Zustand der Elektronen, er kann sogar Elektronen aus dem Molekül herausreißen.

Eingriff in den Reaktionspfad

Elektronen sind viel leichter als Atomkerne. Daher lassen sich zwar die Elektronen im Molekül durch einen ultrakurzen Laserpuls ganz dramatisch beeinflussen, die schweren Atomkerne hingegen sind viel zu träge, um sich in dieser kurzen Zeit merklich zu bewegen. Werden allerdings genau die richtigen Elektronen aus dem Molekül entfernt, lässt sich erreichen, dass das Molekül an einer gewünschten Stelle auseinanderbricht, so dass etwa aus Acetylen (C2H2), CH2+, CH+, oder Kohlenstoff-Ionen (C+) entstehen. „Verschiedene Reaktionspfade sind möglich, wir können diese Pfade nun erstmals voneinander unterscheiden und gezielt steuern, welcher Pfad eingeschlagen werden soll“, erklärt Markus Kitzler.

Ein extrem kurzer Lichtblitz – fünf Femtosekunden (5.10^-15 Sekunden) sind bloß fünf Millionstel einer Milliardstelsekunde) – löst einen chemischen Prozess aus, dessen Ablauf eigentlich viel länger dauert, ähnlich wie eine sehr kurze Explosion an genau den richtigen Stellen ein großes Gebäude zuerst zum Wanken und nach einer gewissen Zeit schließlich zum Einstürzen bringen kann.

Die Zusammensetzung der chemischen Endprodukte lässt sich durch eine ganze Reihe von Parametern steuern: Die Ausrichtung der Moleküle durch den ersten Laserpuls, die Dauer und Intensität des zweiten Pulses, der die Moleküle ionisiert.

Durchgeführt wurden die Experimente im Team von Markus Kitzler. Federführend beteiligt an der Analyse der Daten war Xinhua Xie, Post-Doc am Institut für Photonik. Unterstützung in der Modellierung der beobachteten Prozesse, ohne die solch tiefe Einsichten nicht möglich gewesen wären, bekam die Forschungsgruppe von Katharina Doblhoff-Dier und Prof. Stefanie Gräfe von der Universität Jena, sowie von Erik Lötstedt, Mitarbeiter von Prof. Yamanouchi an der Universität Tokyo.

Die Forschungsergebnisse wurden nun in zwei Publikationen veröffentlicht – im Fachjournal „Physical Review Letters“, sowie in „Physical Review X“.

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Warum verhalten sich Metalloxid-Oberflächen chemisch unterschiedlich?

    Metalloberflächen spielen als Katalysatoren für viele wichtige Anwendungen eine Rolle – von der Brennstoffzelle bis hin zur Reinigung von Auto-Abgasen. Ihr Verhalten wird allerdings ganz entscheidend von Sauerstoffatomen bestimmt, die sich an der Oberfläche festsetzen.  Das Phänomen kennt m ... mehr

    Stabile Katalysatoren für die Energiewende

    Auf dem Weg zu einer CO2-neutralen Wirtschaft müssen wir eine ganze Reihe von Technologien perfektionieren – dazu zählt die elektrochemische Gewinnung von Wasserstoff aus Wasser, die Brennstoffzelle oder auch die Rückführung von Kohlendioxid aus der Atmosphäre in den Kohlenstoffkreislauf. A ... mehr

    Altes Rätsel um „neue Sorte von Elektronen“ gelöst

    Elektronen verlassen ein bestimmtes Material, fliegen davon und werden gemessen – das ist in der Physik etwas ganz Alltägliches. Manche Materialien emittieren Elektronen, wenn man sie mit Licht bestrahlt, dann spricht man von „Photoelektronen“. In der Materialforschung spielen auch sogenann ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr