09.02.2017 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Abgas als Rohstoff

Chemiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben ein Verfahren entwickelt, mit dem Stickoxide, die in industriellen Prozessen anfallen, für die Herstellung von Farbstoffen und Arzneimitteln genutzt werden können. Mit dieser Methode könnten Unternehmen künftig die Entgiftung von Abgasen mit der Produktion neuer Stoffe kombinieren.

Stickoxide zählen zu den bedeutendsten Umweltgiften. Die Verbindungen aus Stickstoff und Sauerstoff entstehen vor allem bei der Verbrennung, etwa in Kraftfahrzeugmotoren, in Gas- und Kohlekraftwerken, aber auch bei anderen thermischen und chemischen Prozessen in der Industrie. Um die Abgase zu reinigen, werden entweder Nachverbrennungen oder das Prinzip der katalytischen Reduktion eingesetzt – beide Verfahren sind jedoch vergleichsweise aufwändig und mit gewissen Nachteilen behaftet. Doch Stickoxide sind nicht nur überflüssige Gifte. Wie neue Forschungsarbeiten zeigen, können sie auch in der chemischen Synthese hochwertiger Produkte eingesetzt werden.

Umweltgift als Rohstoff nutzen

Die Forschergruppe um Prof. Dr. Markus Heinrich vom Lehrstuhl für Pharmazeutische Chemie der FAU hat jetzt ein hocheffizientes Verfahren entwickelt, das genau diese zwei Welten – die Reinigung von Abgasströmen und die sinnvolle Verwertung der Stickoxide – zusammenbringt. In einer Modellanlage simulierten die Erlanger Chemiker ein typisches Verfahren der Industrie: die Umwandlung von Kupfer in Kupfernitrat. „Kupfernitrat wird als Farbstoff, Korrosions- und Holzschutzmittel sowie als Oxidationsmittel in der Synthesechemie verwendet“, erklärt Markus Heinrich. „Das beim Herstellungsprozess entstehende Stickstoffdioxid können wir unmittelbar mit der Synthese von Balsalazid und Sulfasalazin kombinieren – zwei zu den Azoverbindungen zählende Arzneistoffe, die zur Behandlung chronisch entzündlicher Darmerkrankungen eingesetzt werden.“

Fast 100 Prozent Abgasreinigung

Herzstück der Modellanlage ist ein röhrenförmiger Gaswäscher, mit dem die Forscher die Stickstoffdioxidkonzentration im Abgasstrom um 99,7 Prozent senken konnten. „Das ist ein sensationeller Wert, den wir allerdings unter Laborbedingungen erreichen“, schränkt Markus Heinrich ein. „Wir gehen jedoch davon aus, dass unsere Methode auch in der industriellen Anwendung einen guten Wirkungsgrad erzielen wird.“ Im Gegensatz zu früheren Versuchen im Experimentallabor der Pharmachemiker verwertet die neue Anlage auch geringe Stickoxid-Konzentrationen und arbeitet selbst bei Schwankungen des Abgasstroms zuverlässig.

Azoverbindungen für verschiedene Einsatzgebiete

Die Herstellung von Kupfernitrat ist nur ein Beispiel für industrielle Verfahren, bei denen Stickoxide bislang aufwändig neutralisiert werden, anstatt sie in gewinnbringende Syntheseprozesse zu überführen. Heinrich: „Überall dort, wo wir es mit überschaubaren Ausgangsstoffen zu tun haben, dazu zählt beispielsweise auch das Ätzen von Leiterplatten in der Elektronikindustrie, können wir Stickoxide als Nebenprodukt für die Herstellung von Arzneistoffen verwenden. Anders sieht es zum Beispiel bei Kraftwerken oder Müllverbrennungsanlagen aus: Aus diesem Cocktail an Giften und Schwermetallen sollten wir besser keine Medikamente gewinnen. Aber es ist möglich und sinnvoll, die im Abgas befindlichen Stickoxide für die Herstellung bestimmter Farbstoffe auf der Basis von Azoverbindungen zu verwenden.“

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Magnesium-Chemie auf den Kopf gestellt

    Die internationale Wissenschaftsgemeinschaft ist sich einig: Die neuesten Ergebnisse eines Forschungsteams der FAU stellen die komplette Magnesium-Chemie auf den Kopf. Die Forscher haben Magnesium, das in chemischen Verbindungen normalerweise zweifach positiv geladen ist, in der elementaren ... mehr

    Forscher knacken molekularen Stickstoff mit Kalzium

    Chemiker weltweit sind ständig auf der Suche, den in der Luft enthaltenen elementaren Stickstoff, kurz N2, mit einfachen Mitteln für chemische Reaktionen verfügbar zu machen. Das gestaltet sich schwierig, denn Stickstoff ist ein wenig reaktionsfreudiges Gas mit einer Dreifachbindung, die zu ... mehr

    Rekordauflösung in der Röntgenmikroskopie

    Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben err ... mehr

  • q&more Artikel

    Bunte Fehlgerüche in Künstlerfarben

    Farben auf Acrylbasis gehören zu den am häufigsten verwendeten Farben. Obwohl die Farben auf Wasserbasis hergestellt werden können und dabei geringe Anteile an flüchtigen Substanzen in der Produktion zum Einsatz kommen, weisen Acrylfarben dennoch häufig einen starken Eigengeruch auf. Bislan ... mehr

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Andrea Büttner

    Andrea Büttner, Jahrgang 1971, studierte Lebensmittelchemie an der Ludwig-Maximilians-Universität München. Anschließend promovierte und habilitierte sie an der Technischen Universität München im Bereich Aromaforschung. Seit 2007 baute sie am Fraunhofer IVV das Geschäftsfeld Produktwirkung s ... mehr

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr