16.06.2017 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Universell stabilisiert

Mikropartikel mit rauer, himbeerenartiger Oberfläche, stabilisieren Emulsionen auf neuartige Weise

Forscher um Lucio Isa, Professor für Grenzflächen am Departement Materialwissenschaft der ETH Zürich, haben Siliziumpartikel zur neuartigen Stabilisierung von Emulsionen geschaffen. Eine Emulsion ist ein fein verteiltes Gemisch zweier im Grunde genommen nicht mischbarer Flüssigkeiten.

Das Gemisch besteht aus Tröpfchen der einen Flüssigkeit, die in der anderen dispersiert sind. Salatsauce aus Öl und Essig (eigentlich Wasser) ist ein alltägliches Beispiel dafür: Ihre Bestandteile Essig und Öl mischen sich nicht von alleine. Erst durch kräftiges Rühren mit einem Schwingbesen entsteht ein gleichförmiges Gemisch. Lässt man dieses stehen, verschmelzen die fein verteilten Essigtröpfchen und die Flüssigkeiten trennen sich vollständig auf.

Verschiedene Emulgatoren nötig

Es ist daher nötig, Emulsionen zu stabilisieren. Dazu wird eine grosse Zahl verschiedener Emulgatoren wie zum Beispiel Tenside, Proteine oder Polymere eingesetzt. Schon zu Beginn des 20. Jahrhunderts zeigten die britischen Chemiker W. Ramsden und S.U. Pickering auf, dass Emulsionen zudem auch mit feinsten Festkörperpartikeln, beispielsweise solchen aus kugelförmigen Silikatpartikeln (SiO2), stabilisiert werden können.

Dabei bewegen sich die Partikel spontan in die Grenzschicht zwischen den zwei Flüssigkeiten und lagern sich dort an. Dadurch bilden sie eine Art Panzer um die Tröpfchen und verhindern deren Verschmelzung - die Emulsion bleibt für lange Zeit stabil. Allerdings brauchte es bis anhin zwei Typen von Partikeln: solche mit wasserliebenden (hydrophilen) Oberflächen, die mehrheitlich im Wasser sitzen und nur Öl-in-Wasser-Emulsionen stabilisieren, und solche mit hydrophoben Oberflächen, welche grösstenteils in Öl sitzen. Sie stabilisieren demzufolge nur Wasser-in-Öl-Gemische.

Ein Emulgator genügt

Damit könnte nun Schluss sein: Die ETH-Forscher um Isa haben die Oberfläche solcher Silikatkügelchen von eins bis sechs Mikrometer Durchmesser mit Silikat-Nanopartikeln von viel geringerem Durchmesser bestückt, um sie aufzurauen. Dadurch erhalten die winzigen Kügelchen die Form von Himbeeren. Michele Zanini, Doktorand bei Isa, konnte die Rauheit der Oberfläche kontrolliert verändern und erstellte eine ganze Sammlung solcher Partikel.

In einer Studie zeigen die Forscher nun auf, dass sie mit nur einer Sorte von solchen Himbeer-Partikeln beide Typen von Emulsionen stabilisieren können. Abhängig ist dies einzig davon, in welche Flüssigkeit sie die Partikel vor der Emulgierung einbringen. Geben die Forscher die Partikel in die Ölphase, entsteht eine Wasser-in-Öl-Emulsion. Umgekehrt können sie eine Öl-in-Wasser-Emulsion (fein verteilte Öltröpfchen in Wasser) stabilisieren, wenn sie ihre neuen Partikel zuvor in Wasser lösen. «Diese neuen Partikel sind dadurch universell einsetzbar, um Emulsionen herzustellen», sagt Lucio Isa.

Raue Partikel wandern weniger weit

Zu tun habe dies damit, dass die raue Oberfläche die Beweglichkeit der Partikel durch die Tröpfchenoberfläche verringere. «Sie stossen zwar an die Oberfläche zwischen den Flüssigkeiten vor, können sich aber weniger weit in diese hineinbewegen als vergleichbare Silikatpartikel mit glatter Oberfläche – die rauen Partikel bleiben stecken, ehe sie die für sie energetisch günstigste Position an der Grenzfläche einnehmen können», betont der ETH-Professor.

Mit ihren Himbeer-Partikeln haben Isa und seine Mitarbeiter eine erste Grundlage für weitere Forschung auf diesem Gebiet geschaffen. Ihr neues Verfahren zur Entwicklung der Partikel als Emulgatoren haben die ETH-Forscher bereits patentieren lassen.

Neue Anwendungen

Mögliche Anwendungen für diese Teilchen gibt es viele, nämlich überall dort, wo Emulsionen stabilisiert werden müssen, wie zum Beispiel in der chemischen Industrie. Obwohl sich Isa und seine Mitarbeiter auf Modellsysteme konzentrierten, können ihre im Labor entdeckten Prinzipien auf natürliche, raue Partikel als Emulgatoren ausgeweitet werden. Dadurch sind neue Anwendungen denkbar, etwa in der Lebensmittelbranche, in der Kosmetik oder der Pharmaindustrie. Dafür braucht es allerdings weitere Forschung.

Fakten, Hintergründe, Dossiers
Mehr über ETH Zürich
  • News

    Wie die chemische Industrie die Klimaziele erreichen kann

    ETH-​Forscher analysierten verschiedene Möglichkeiten, die Netto-​CO2-​Emissionen der chemischen Industrie auf null zu reduzieren. Die Wissenschaftler kommen zum Schluss: Eine CO2-​neutrale chemische Industrie ist möglich. Bis 2050 soll unsere Gesellschaft CO2-​neutral werden. Dies hat der ... mehr

    Komplexe Zelluloseobjekte drucken

    Forscher der ETH Zürich und der Empa druckten mit einem Zellulose-Verbundmaterial verschiedene Objekte, deren Zellulosegehalt höher liegt als derjenige von anderen 3D-gedruckten zellulosebasierten Gegenständen. Ein Trick half dabei. Bäume und andere Pflanzen machen es vor: Sie stellen Zell ... mehr

    Unterschätzte chemische Vielfalt

    Ein internationales Forscherteam hat eine globale Bestandsaufnahme aller registrierten Industriechemikalien erstellt: Weltweit werden etwa 350'000 verschiedene Substanzen hergestellt und gehandelt, nicht wie bisher geschätzt nur 100'000. Von gut einem Drittel aller dieser Substanzen fehlen ... mehr

  • Forschungsinstitute

    ETH Zürich Inst.f. Lebensm.wiss.,Ern.,Ges.

    Die Kernkompetenzen des Labors für Lebensmittelmikrobiologie sind die Detektion und Kontrolle von pathogenen Organismen im Lebensmittel, die Analyse komplexer Mikrofloren und molekulare Mechanismen der bakteriellen Pathogenität. mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr