Meine Merkliste
my.chemie.de  
Login  

Energiewende könnte Bedarf an kritischen Metallen erhöhen

16.11.2017

HZDR/ bilderbuero

Wenn ein Rohstoff fehlt, kann dies ganze Industrien empfindlich treffen. Seit rund zehn Jahren wird deshalb stark in die Erforschung von Hochtechnologiemetallen investiert, bei deren Versorgung es viele Risiken gibt und die deshalb als kritisch gelten. Wissenschaftler aus dem Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF), das zum Helmholtz-Zentrum Dresden-Rossendorf gehört, und der Technischen Universität Chemnitz haben die Studien zur Kritikalität unter die Lupe genommen und Fehler in den aktuellen Methoden zur Bewertung kritischer Rohstoffe entdeckt. Die Forscher regen daher eine Neueinschätzung an, welche Elemente als kritisch einzustufen sind. Hierunter könnten dann auch Kupfer, Eisen, Aluminium und andere klassische Industriemetalle fallen.

Als die Volksrepublik China vor etwa zehn Jahren die Ausfuhr von Seltenen Erden eine Zeit lang beschränkte, sorgte dies für erhebliche Unruhe auf dem globalen Rohstoffmarkt. International erkannten Regierungen, wie verletzlich Industrien sind, wenn Ressourcen ausfallen. In vielen Ländern wurden deshalb Studien zur Kritikalität in Auftrag gegeben mit dem Ziel, besser zu verstehen, bei welchen Metallen Lieferprobleme zu erwarten sind. Die Ergebnisse sollen Politikern helfen, um Maßnahmen für eine sichere Rohstoffversorgung zu planen.

Risikofaktoren für kritische Rohstoffe

Es gibt eine Vielzahl von Listen mit sogenannten kritischen Rohstoffen. Als kritisch gelten diejenigen Ressourcen, die sich durch eine große volkswirtschaftliche Bedeutung sowie durch eine hohe Wahrscheinlichkeit für Versorgungsprobleme auszeichnen. Auf fast allen Listen kommen Hochtechnologiemetalle vor, wie Seltene Erden, Platingruppenmetalle, Niob, Tantal, Antimon, Gallium, Germanium und Indium. In ihrer aktuellen Studie („Kritische Rohstoffe – Sinn oder Unsinn?“) haben Dr. Max Frenzel und seine Kollegen geprüft, nach welchen Methoden die kritischen Rohstoffe ausgewählt werden und inwiefern diese den Vorgaben der klassischen Risikotheorie gerecht werden.

Ob ein Rohstoff kritisch ist, hängt von vielen Risikofaktoren ab. Dazu zählen zum Beispiel die politische Stabilität des Landes, in dem der Rohstoff produziert wird, die Konzentration der Produktion einer Ressource in einem bestimmten Land oder die Nachfrage. Genau bei diesen Faktoren liegt laut den Experten eine große Schwäche der untersuchten Studien. „Diese begründen nicht, wie die Risiken ausgewählt, abgebildet und gewichtet werden, um daraus die Kritikalität einzuschätzen. Das bedeutet, die Listen sind nicht verlässlich. Im besten Falle sind manche Rohstoffe gar nicht kritisch, die bisher so bewertet werden“, erklärt Max Frenzel.

Industriemetalle vermutlich kritischer als Hochtechnologieelemente

Das Fazit der Forscher: Es besteht noch viel Forschungsbedarf auf dem Feld kritischer Rohstoffe. „Es sollte eine korrekte Neubewertung kritischer Ressourcen durchgeführt werden. Dies erfordert dann auch die Neueinschätzung bekannter Risikofaktoren im Sinne der klassischen Risikotheorie und damit sehr viel Arbeit und Zeit“, resümiert Max Frenzel. Nur durch Kooperation von Wissenschaftlern aus unterschiedlichen Bereichen, wie Material- und Erdwissenschaften sowie Physik, können die Fundamente für eine sinnvolle Bewertung kritischer Rohstoffe auf der Grundlage der Risikoanalyse neu gelegt werden.

„Vermutlich sind auch Metalle kritisch, die bisher noch nicht so eingestuft werden“, erläutert der Forscher weiter. Das könnte bestimmte klassische Industrierohstoffe betreffen. Derzeit haben in der EU Werkstoffe für die Stahlerzeugung wie Eisenerz, Kokskohle, Chrom und Nickel, die Industriemetalle Kupfer, Aluminium, Titan und Zink sowie das Edelmetall Gold einen sehr hohen Materialwert. Aufgrund ihres breiten Einsatzes in allen Bereichen der Wirtschaft haben sie eine viel größere volkswirtschaftliche Bedeutung als Hochtechnologieelemente, die nur für extrem spezialisierte Anwendungen gebraucht werden. Bei einem Lieferproblem verursachen Industrierohstoffe deshalb ein größeres volkswirtschaftliches Risiko – ein wichtiger Aspekt bei der Frage, wie kritisch ein Rohstoff ist. Wird zum Beispiel nicht genug Stahl geliefert, der in fast allen wirtschaftlichen Bereichen eingesetzt wird, ist mit deutlich höheren Kosten zu rechnen als bei einem vergleichbaren Engpass bei den Seltenen Erden. Industrierohstoffe, die kritischer sein könnten als Hochtechnologiemetalle, werden in großen Mengen für den Bau neuer Wind- und Solaranlagen, Energiespeicher und Stromnetze für die Energiewende gebraucht. Diese könnte also künftig den Bedarf an kritischen Ressourcen steigern, argumentieren die Forscher.

Mehr über Helmholtz-Institut Freiberg für Ressourcentechnologie
  • News

    Bio-Angeln für Seltene Erden

    Ohne wichtige Schlüssel-Elemente, wie Kupfer oder die Metalle der Seltenen Erden, funktioniert weder die moderne Elektronik noch fließt elektrischer Strom. Ausgediente Energiesparlampen, Handys, Computer und Schrotte könnten eine wichtige Quelle für diese Rohstoffe sein, allerdings lassen s ... mehr

    Forscher gründen Firma für Rohstoffanalytik

    Je besser die Eigenschaften von Rohstoffen bekannt sind, umso effizienter und wirtschaftlicher lassen sich diese abbauen, aufbereiten, zu Metallen verarbeiten und wieder recyceln. Und auch um zu wissen, wo es sich lohnt, nach neuen Lagerstätten zu suchen, sind genaue mineralogische Informat ... mehr

    Kupferbergbau mit bioaktiven Stoffen aus Bakterien

    Chile ist einer der wichtigsten Kupferlieferanten für Deutschland. Im Rahmen der Wissenschaftlich-Technologischen Zusammenarbeit beider Länder wird nun untersucht, wie sich chilenische Kupfererze umweltverträglicher aufbereiten lassen. Aus Bakterien gewonnene bioaktive Stoffe sollen Chemika ... mehr

  • Forschungsinstitute

    Helmholtz-Institut Freiberg für Ressourcentechnologie

    Das Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) hat das Ziel, innovative Technologien für die Wirtschaft zu entwickeln, um mineralische und metallhaltige Rohstoffe effizienter bereitzustellen und zu nutzen sowie umweltfreundlich zu recyceln. Es wurde im Jahr 2011 gegründet, ... mehr

Mehr über Helmholtz-Zentrum Dresden-Rossendorf
  • News

    Ein neuer Dreh für die Nano-Elektronik

    In den vergangenen Jahren kannte die Entwicklung in der elektronischen Datenverarbeitung nur eine Richtung: Die Industrie verkleinerte die Bauteile bis in den Nanometerbereich. Doch langsam stößt dieser Prozess an eine physikalische Grenze. Forscher des Helmholtz-Zentrums Dresden-Rossendorf ... mehr

    Laser erzeugt Magnet – und radiert ihn wieder aus

    Mit einem Laserstrahl in einer Legierung magnetische Strukturen zu erzeugen und anschließend wieder zu löschen – das gelang Forschern vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Kooperation mit dem Helmholtz-Zentrum Berlin (HZB) und der Universität von Virginia in Charlottesville, US ... mehr

    Die Zukunft der Rohstofferkundung in Europa

    Europa soll attraktiver für die Erkundung von Rohstoffen werden. Partner aus Forschung und Industrie wollen dafür innovative, schonende Technologien entwickeln und unter realitätsnahen Bedingungen testen. Zu diesem Zweck sollen drei europäische Referenzgebiete in Deutschland (Geyer), Finnla ... mehr

  • Forschungsinstitute

    Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V.

    Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) leistet langfristig ausgerichtete Spitzenforschung auf den Gebieten Energie, Gesundheit und Materie. In strategischen Kooperationen mit nationalen und internationalen Partnern bearbeiten wir neue, für die moderne Industriegesellschaft drängend ... mehr

Mehr über TU Chemnitz
  • News

    Erste elektronische Autobahnen auf der Nanoskala

    Die gezielte Funktionalisierung von kohlenstoff-basierten Nanostrukturen erlaubt es erstmals, Strompfade direkt abzubilden und eröffnet dabei Wege für neuartige Quantenbauelemente. Rechner werden immer schneller und damit leistungsfähiger. Ein Problem dabei ist jedoch, dass sie dafür mehr ... mehr

    Premiere: Vollständige Elektromotoren im 3D-Druck

    Mithilfe von metallischen und keramischen Pasten, die durch ein Extrusionsverfahren schichtweise in Form gebracht und anschließend gesintert werden, gelang Forschern der Professur für Elektrische Energiewandlungssysteme und Antriebe an der Technischen Universität Chemnitz der Druck von voll ... mehr

    Das geheime Leben der Gummireifen

    Was passiert eigentlich mit alten Autoreifen? Mit dieser Frage befassen sich aktuell Wissenschaftler am Institut für Strukturleichtbau der Technischen Universität Chemnitz. Die Frage hat vor dem Hintergrund von Ressourcenschonung und Umweltschutz eine hohe Brisanz, denn jährlich fallen welt ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.