Molekulare Selbstorganisation: Wo Moleküle sich gerne niederlassen

13.12.2006

Schon seit geraumer Zeit untersuchen PhysikerInnen, wie Oberflächen beschaffen sein müssen, damit sich Moleküle darauf in bestimmten Mustern anordnen. Ihr Ziel: Die Moleküle sollen auf der präparierten Oberfläche wohldefinierte Strukturen im Nanometerbereich bilden. Kürzlich haben Empa-Forscher in einer Studie gezeigt, wie eine Goldoberfläche ausgestattet sein muss, damit Fullerenmoleküle darauf in einer bestimmten "Sitzordnung" Platz nehmen können. Von der gezielten Selbstorganisation gewisser Moleküle versprechen sich Forschungskreise neuartige Anwendungen in der Sensorik, der molekularen Elektronik oder der Katalyse.

Wie sie in der Oktober-Ausgabe des "Journal of Physical Chemistry" schreiben, verwendeten Empa-Forscher Roman Fasel und sein Team eine besonders präparierte Goldoberfläche, auf der sich Fullerenmoleküle (C60) regelmässig anordnen. Der Trick besteht darin, den Buckyballs auf einer speziell zugeschnittenen, stufenartigen Oberfläche "Sitzgelegenheiten" anzubieten, wo sie sich stets in der gleichen "Sitzordnung" niederlassen.

Als "tribünenartigen Parkettraum" benutzten die Nanoforscher eine Goldoberfläche mit kleinen Treppenstufen. Auf den einzelnen Treppenstufen wiederum entstand nun eine Struktur mit sich rhythmisch abwechselnden Bereichen von unterschiedlich angeordneten Goldatomen. Treppenstufen und das Stufenmuster bildeten zusammen ein zweidimensionales Gitter. Gaben sie nun Fullerene auf das Substrat, konnten die Wissenschaftler feststellen, dass sich die Moleküle an den immer gleichen Orten des Gitters ansiedeln, nämlich jeweils am unteren Ende der Stufenkanten, in Ketten von meist vier oder fünf Molekülen.

Das Experiment zeige, so Roman Fasel, dass sich die Anordnung von Molekülen durch speziell präparierte Oberflächen steuern lasse. Und dies geschieht erst noch bei Zimmertemperatur. "Vorstellbar sind unendlich viele Kombinationen von sich selbst organisierenden Molekülen auf den entsprechenden Oberflächen", sagt Fasel. "Wir haben nun an einer bestimmten Kombination vorgeführt, dass eine gezielte Verankerung von Molekülen auf einer Oberfläche prinzipiell möglich ist". Mit komplexeren Molekülen sollten sich auf ähnliche Art und Weise dereinst beispielsweise nanometergrosse Schaltkreise herstellen lassen, die in winzigen elektronischen Bauteilen eingesetzt werden könnten, so Fasel.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten