Positronen spüren Defekte auf

20.08.2007

Die Speicherung von Wasserstoff spielt eine besonders wichtige Rolle in neuen Konzepten für den Antrieb von Kraftfahrzeugen oder die Nutzung der Solarenenergie. Hierzu eignen sich bestimmte Metalle oder Legierungen. Ein Metall hat nie eine perfekte Kristallstruktur, sondern weist oft atomare Fehlstellen auf. Doch aus kleinen Fehlstellen können beim Beladen mit Wasserstoff größere Hohlräume entstehen. Mit Hilfe von Positronen gelingt es im Forschungszentrum Dresden-Rossendorf (FZD), derartige Defekte in Speichermaterialien aufzuspüren und genauer zu charakterisieren.

Die Wechselwirkung mit atomaren Gitterdefekten, die sich bereits im Speichermaterial befinden oder erst während der Beladung bilden, ist dabei nicht nur grundsätzlich von Interesse. Vielmehr spielen Defekte auch in technischer Hinsicht eine wichtige Rolle im Hinblick auf die Eigenschaften von Gebrauchslegierungen bei Anwesenheit von Wasserstoff. Sie könnten die Nutzungseigenschaften und -dauer des Metall-Wasserstoffspeichers erheblich beeinträchtigen. Die genaue Rolle solcher Defekte bei der Wasserstoffspeicherung ist trotz langjähriger Forschung in vielerlei Hinsicht noch unverstanden. Dies liegt daran, dass eine direkte Charakterisierung dieser Defekte im Nanometer- bis Mikrometer-Bereich sehr schwierig ist.

Dr. Astrid Pundt von der Universität Göttingen, Dr. Jakub Cizek von der Karls-Universität in Prag und Dr. Gerhard Brauer, Leiter des Rossendorfer Positronen-Labors, erzeugen und untersuchen systematisch dünne Metall-Schichten auf ihre jeweilige Defektstruktur. Dabei entdeckten sie unerwartet viele Defekte bei der Wasserstoffbeladung von Niob, das als potentielles Speichermaterial der Zukunft betrachtet wird. Die Wasserstoffaufnahme kann in diesem Metall zu derart hohen inneren Spannungen führen, dass sich die Schicht von ihrer Unterlage teilweise ablöst (siehe Bild). Das Beladen mit Wasserstoff kommt bei Niob sogar dem Schmelzen des Metalls gleich, denn die Defekt-Konzentrationen sind bei beiden Vorgängen ähnlich hoch. Verglichen mit der Gleichgewichts-Konzentration dieser Defekte bei Zimmertemperatur wurde somit ein Anstieg um bis zu 23 Größenordnungen gefunden.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Entdecken Sie die neuesten Entwicklungen in der Batterietechnologie!