Meine Merkliste
my.chemie.de  
Login  

Sauerstoff zum Ein- und Ausschalten

15.03.2017

Copyright: TU Wien

Kraftmikroskop an der TU Wien

An der TU Wien ist es gelungen, einen chemisch höchst wichtigen Prozess gezielt zu steuern: Sauerstoffmoleküle können zwischen einem reaktiven und einem nicht reaktiven Zustand umgeschaltet werden.

Sauerstoff ist hoch reaktiv. Warum verbrennen wir dann nicht spontan, obwohl wir ständig von diesem aggressiven Element umgeben sind? Der Grund ist, dass Sauerstoff um uns herum als O2-Molekül vorkommt, in einer wenig reaktiven Form. An der TU Wien gelang es nun, einzelne Sauerstoffmoleküle auf einer Titanoxid-Oberfläche unter einem speziellen Kraftmikroskop ganz gezielt von einem nicht-reaktiven auf einen reaktiven Zustand umzuschalten. Gleichzeitig konnte man diesen Prozess erstmals auf hochauflösenden Bildern festhalten.

Aktivierend: Hitze oder Elektronen

„Es gibt verschiedene Möglichkeiten, die stabilen, nicht-reaktiven O2-Moleküle in einen reaktiven Zustand zu versetzen“, sagt Martin Setvin, Mitarbeiter in der Arbeitsgruppe von Prof. Ulrike Diebold am Institut für Angewandte Physik der TU Wien. „Man kann die Temperatur erhöhen – das passiert bei einer Verbrennung. Oder man fügt den Molekülen ein zusätzliches Elektron hinzu, auch dadurch werden sie chemisch aktiv.“

Dieser Vorgang, Sauerstoffmoleküle durch Hinzufügen von Elektronen zu aktivieren, ist allgegenwärtig – alle lebenden Organsimen nutzen diesen Trick, und auch moderne Brennstoffzellen funktionieren auf diese Weise. An der TU Wien ist es nun gelungen, diesen Prozess erstmals im Kraftmikroskop auf atomarer Skala abzubilden und gezielt zu steuern.

Untersucht wurden Sauerstoff-Moleküle, die auf der Oberfläche eines Titanoxid-Kristalls sitzen. Titanoxid ist ein technologisch besonders interessantes Material, das in vielen Bereichen eingesetzt wird – von der Beschichtung für künstliche Hüftgelenke bis hin zu selbstreinigenden, schmutzabweisenden Spiegeln. Es ist ein Photokatalysator, das bedeutet, dass seine Fähigkeit, sich an chemischen Reaktionen zu beteiligen, von der Lichteinstrahlung abhängt.

Atome direkt abbilden

An der TU Wien wurde in den letzten Jahren ein ganz besonders leistungsfähiges Kraftmikroskop aufgebaut und optimiert, finanziert durch den Wittgensteinpreis, den Ulrike Diebold 2014 gewann. Dieses Gerät spielte bei dem aktuellen Forschungsprojekt eine entscheidende Rolle: „Eine winzige Nadel wird in Schwingung versetzt und über die Oberfläche bewegt. Durch die Kraft, die zwischen der Nadelspitze und den Atomen der Probe wirkt, ändert sich die Schwingung, und daraus kann man schließlich Punkt für Punkt ein Bild der Oberfläche erstellen“, erklärt Ulrike Diebold. „Durch eine ausgetüftelte Abbildungstechnik und viel Erfahrung im Umgang mit solchen Materialien können wir sogar Bilder erzeugen, auf denen man den Unterschied zwischen neutralen, inaktiven Sauerstoff-Molekülen und reaktiven, geladenen Sauerstoff-Molekülen mit zusätzlichem Elektron direkt sieht.“

Mit der Spitze des Kraftmikroskops kann man auch einzelnen Sauerstoff-Molekülen ganz gezielt ein Elektron hinzufügen und dann beobachten, dass es dadurch vom inaktiven in den aktiven Zustand wechselt. Dasselbe geschieht auch, wenn man die Titanoxid-Oberfläche mit Licht bestrahlt – dann beginnen im Material freie Elektronen zu wandern und können eines der Sauerstoff-Moleküle aktivieren.

„Egal ob wir mit dem Mikroskop ein Elektron hinzufügen oder das Titanoxid durch Licht dazu bringen, ein Elektron an das Sauerstoff-Molekül zu liefern – wie wir zeigen konnten, ist das Endergebnis dasselbe“, sagt Ulrike Diebold. „Unsere Methode ermöglicht uns ein völlig neues Ausmaß an Kontrolle über diesen Prozess. Das eröffnet uns neue Möglichkeiten, die Wirkung von Katalysatoren zu untersuchen.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Der Strahl, der unsichtbar macht: Neue Tarnkappen-Technologie entwickelt

    Wie macht man Materialien unsichtbar? Ein Forschungsteam der TU Wien hat mit Unterstützung aus Griechenland und den USA einen neuen Ansatz für Tarnkappen-Technologien entwickelt: Ein vollständig undurchsichtiges Material wird von oben oder unten mit einem ganz bestimmten Wellenmuster bestra ... mehr

    Hohle Atome: Die große Wirkung eines unterschätzten Effekts

    Ein über 20 Jahre altes Rätsel der Atomphysik wurde an der TU Wien gelöst. Das Ergebnis soll nun auch helfen, die Wirksamkeit ionisierender Strahlung in der Krebstherapie besser zu verstehen. Die „hohlen Atome“, die in den Labors der TU Wien hergestellt werden, sind äußerst exotische Objekt ... mehr

    Stickoxide sind auch für die Straße ungesund

    Je seltener man den Straßenbelag erneuern muss, umso besser ist es für die Umwelt und die Steuerzahler. An der TU Wien arbeitet man daher an robusteren, langlebigeren Asphalt-Sorten. Bisher war allerdings nicht ganz klar, welche Bestandteile der Luft überhaupt für die Alterung des Straßenbe ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • Universitäten

    Technische Universität Wien

    Die TU Wien ist mit knapp 30.000 Studierenden und rund 4.800 Mitarbeiter_innen Österreichs größte Forschungs- und Bildungsinstitution im naturwissenschaftlich-technischen Bereich. Unter dem Motto "Technik für Menschen" wird an der TU Wien schon seit über 200 Jahren geforscht, gelehrt und g ... mehr

    Technische Universität Wien

    mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.