15.03.2017 - Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Sauerstoff zum Ein- und Ausschalten

An der TU Wien ist es gelungen, einen chemisch höchst wichtigen Prozess gezielt zu steuern: Sauerstoffmoleküle können zwischen einem reaktiven und einem nicht reaktiven Zustand umgeschaltet werden.

Sauerstoff ist hoch reaktiv. Warum verbrennen wir dann nicht spontan, obwohl wir ständig von diesem aggressiven Element umgeben sind? Der Grund ist, dass Sauerstoff um uns herum als O2-Molekül vorkommt, in einer wenig reaktiven Form. An der TU Wien gelang es nun, einzelne Sauerstoffmoleküle auf einer Titanoxid-Oberfläche unter einem speziellen Kraftmikroskop ganz gezielt von einem nicht-reaktiven auf einen reaktiven Zustand umzuschalten. Gleichzeitig konnte man diesen Prozess erstmals auf hochauflösenden Bildern festhalten.

Aktivierend: Hitze oder Elektronen

„Es gibt verschiedene Möglichkeiten, die stabilen, nicht-reaktiven O2-Moleküle in einen reaktiven Zustand zu versetzen“, sagt Martin Setvin, Mitarbeiter in der Arbeitsgruppe von Prof. Ulrike Diebold am Institut für Angewandte Physik der TU Wien. „Man kann die Temperatur erhöhen – das passiert bei einer Verbrennung. Oder man fügt den Molekülen ein zusätzliches Elektron hinzu, auch dadurch werden sie chemisch aktiv.“

Dieser Vorgang, Sauerstoffmoleküle durch Hinzufügen von Elektronen zu aktivieren, ist allgegenwärtig – alle lebenden Organsimen nutzen diesen Trick, und auch moderne Brennstoffzellen funktionieren auf diese Weise. An der TU Wien ist es nun gelungen, diesen Prozess erstmals im Kraftmikroskop auf atomarer Skala abzubilden und gezielt zu steuern.

Untersucht wurden Sauerstoff-Moleküle, die auf der Oberfläche eines Titanoxid-Kristalls sitzen. Titanoxid ist ein technologisch besonders interessantes Material, das in vielen Bereichen eingesetzt wird – von der Beschichtung für künstliche Hüftgelenke bis hin zu selbstreinigenden, schmutzabweisenden Spiegeln. Es ist ein Photokatalysator, das bedeutet, dass seine Fähigkeit, sich an chemischen Reaktionen zu beteiligen, von der Lichteinstrahlung abhängt.

Atome direkt abbilden

An der TU Wien wurde in den letzten Jahren ein ganz besonders leistungsfähiges Kraftmikroskop aufgebaut und optimiert, finanziert durch den Wittgensteinpreis, den Ulrike Diebold 2014 gewann. Dieses Gerät spielte bei dem aktuellen Forschungsprojekt eine entscheidende Rolle: „Eine winzige Nadel wird in Schwingung versetzt und über die Oberfläche bewegt. Durch die Kraft, die zwischen der Nadelspitze und den Atomen der Probe wirkt, ändert sich die Schwingung, und daraus kann man schließlich Punkt für Punkt ein Bild der Oberfläche erstellen“, erklärt Ulrike Diebold. „Durch eine ausgetüftelte Abbildungstechnik und viel Erfahrung im Umgang mit solchen Materialien können wir sogar Bilder erzeugen, auf denen man den Unterschied zwischen neutralen, inaktiven Sauerstoff-Molekülen und reaktiven, geladenen Sauerstoff-Molekülen mit zusätzlichem Elektron direkt sieht.“

Mit der Spitze des Kraftmikroskops kann man auch einzelnen Sauerstoff-Molekülen ganz gezielt ein Elektron hinzufügen und dann beobachten, dass es dadurch vom inaktiven in den aktiven Zustand wechselt. Dasselbe geschieht auch, wenn man die Titanoxid-Oberfläche mit Licht bestrahlt – dann beginnen im Material freie Elektronen zu wandern und können eines der Sauerstoff-Moleküle aktivieren.

„Egal ob wir mit dem Mikroskop ein Elektron hinzufügen oder das Titanoxid durch Licht dazu bringen, ein Elektron an das Sauerstoff-Molekül zu liefern – wie wir zeigen konnten, ist das Endergebnis dasselbe“, sagt Ulrike Diebold. „Unsere Methode ermöglicht uns ein völlig neues Ausmaß an Kontrolle über diesen Prozess. Das eröffnet uns neue Möglichkeiten, die Wirkung von Katalysatoren zu untersuchen.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Ein Sandstrahler auf atomarer Ebene

    Von Halbleitern bis zum Mondgestein: Viele Materialien bearbeitet man mit Ionenstrahlen. An der TU Wien ließ sich nun erklären, wie dieser Prozess von der Rauigkeit der Oberfläche abhängt. Wenn man eine Metalloberfläche von einer Lackschicht befreien möchte, kann man dafür einen Sandstrahle ... mehr

    Einzelne Atome verankern

    Oft heißt es „never change a running system“. Dabei können neue Methoden den alten weit überlegen sein. Während chemische Reaktionen bislang vor allem mit größeren Materialmengen, bestehend aus mehreren hundert Atomen, beschleunigt werden, liefern Einzelatome einen neuen Ansatz für die Kata ... mehr

    Wie sich Ionen ihre Elektronen zurückholen

    Die atomaren Zustände, die in den Labors der TU Wien erzeugt werden, sind sehr außergewöhnlich und spielen für die Forschung eine wichtige Rolle. Es handelt sich um hochgeladene Ionen, also um Atome, die extrem stark elektrisch geladen sind, weil ihnen nicht nur ein Elektron weggenommen wur ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr