Meine Merkliste
my.chemie.de  
Login  

Bradykinin



 

Bradykinin ist ein Peptid- und Gewebshormon der Kinin-Gruppe. Es handelt sich um ein vasoaktives, sprich blutgefäßveränderndes Oligopeptid, das aus neun Aminosäuren besteht und ähnlich wie Histamin wirkt. Bei Entzündungen oder Verletzungen ist es an der Schmerzempfindlichkeitssteigerung an der betroffenen Körperstelle beteiligt. Infolge seiner spezifischen Bindung an Rezeptoren im Gefäßendothel, verursacht es eine Tonusänderung der glatten Muskulatur (abhängig vom Wirkort), erhöht die Permeabilität des Gefäßes und verursacht Schmerz.

Inhaltsverzeichnis

Struktur

Die Primärstruktur des Bradykinin besteht aus 9 Aminosäuren (H2N-ArgProProGlyPheSerProPheArg-COOH) mit der Summenformel C50H73N15O11 und einer Molekülmasse von 1060,22 Da.[1]

Synthese

 

Bradykinin wird durch Kininogenasen wie Kallikrein aus seinen inaktiven Vorläuferproteinen, den Kininogenen, freigesetzt. Durch die Aktivität des Kinin-Kallikrein-Systems wird Bradykinin über eine proteolytische Spaltung seines Kininogen-Vorläuferproteins hochmolekulares Kininogen (HMW-Kininogen) mit Hilfe des Enzyms Kininogenase gebildet.

Metabolismus

Die Inaktivierung der Kinine erfolgt durch Abspaltung C-terminaler Dipeptide mittels Peptidyl-Dipeptidase, einem Enzym, das mit dem Angiotensin Converting Enzyme (ACE) des Renin-Angiotensin-Aldosteron-Systems identisch ist.

Beim Menschen wird Bradykinin durch drei Kininasen abgebaut: Angiotensin Converting Enzyme (ACE), Aminopeptidase P (APP) und Carboxypeptidase N (CPN), welche die Positionen 7-8, 1-2 bzw. 8-9 spalten.[2][3]

Physiologische Rolle

Wirkungen

Bradykinin ist ein potenter Endothel-abhängiger Vasodilatator, verursacht eine Kontraktion nicht-vaskulärer glatter Muskeln, erhöht die Gefäß-Durchlässigkeit und ist auch am Mechanismus von Schmerz beteiligt. In mancher Hinsicht hat es ähnliche Wirkungen wie Histamin, und wie Histamin wird es vor allem aus Venolen und weniger aus Arteriolen freigesetzt.

Bradykinin erhöht die internen Kalziumspiegel im neokortikal Astrozyten und führt dazu, dass diese Glutamat freisetzen.[4]

Bradykinin soll auch die Ursache von trockenem Husten bei manchen Patienten unter einer Therapie mit Angiotensin Converting Enzyme (ACE)-hemmenden Arzneimitteln sein. Dieser refraktäre Husten ist eine häufige Ursache für das Absetzen einer ACE-Hemmer-Therapie.

Rezeptoren

Bei Säugetieren sind zwei Arten von Bradykininrezeptoren bekannt. Der B1-Rezeptor wird nur infolge einer Gewebeverletzung exprimiert und spielt vermutlich eine Rolle bei chronischen Schmerzen. Der B2-Rezeptor ist konstitutiv aktiv und trägt zur gefäßerweiternden Wirkung von Bradykinin bei.

Geschichte

Bradykinin wurde von drei Brasilianischen Physiologen und Pharmakologen entdeckt, die am Instituto de Biologia de São Paulo, in São Paulo Stadt unter der Leitung von Dr. Maurício Rocha e Silva tätig waren. Zusammen mit den Mitarbeitern Wilson Teixeira Beraldo und Gastão Rosenfeld entdeckten sie 1948 dessen starke hypotensive Wirkungen im Tierpräparat. Bradykinin wurde im Blutplasma von Tieren nach Zugabe von Venom von Bothrops jararaca (Brasilianische Lanzenotter Schlange) entdeckt, das von Rosenfeld aus dem Butantan-Institut bereitgestellt wurde. Diese Entdeckung war Teil einer fortgesetzten Untersuchung zum Kreislauf-Schock und zu proteolytischen Enzymen im Zusammenhang mit der Toxikologie von Schlangenbissen, die von Rocha e Silva bereits 1939 begonnen wurde. Bradykinin sollte sich als neues autopharmakologisches Prinzip erweisen, d.h. als Substanz, die im Körper über eine metabolische Modifikation aus Vorläufersubstanzen freigesetzt wird, die pharmakologisch aktiv sind. Nach B.J. Hagwood, Rocha e Silva’s Biografen "hat die Entdeckung von Bradykinin zu einem neuen Verständnis vieler physiologischer und pathologischer Phänomene geführt, einschließlich des durch Venome und Toxine ausgelösten Kreislaufschocks."

Anwendungsgebiete

Die praktische Bedeutung der Entdeckung von Bradykinin wurde offensichtlich, als einer seiner Mitarbeiter an der Medizinische Fakultät von Ribeirão Preto an der Universität von São Paulo, Dr. Sérgio Henrique Ferreira, einen Bradykinin-potenzierenden Faktor (BPF) im Gift von Bothrops entdeckte, der sowohl die Dauer als auch das Ausmaß der Wirkungen von Bradykinin auf die Gefäßerweiterung und den nachfolgenden Abfall des Blutdruckes deutlich verstärkt. Ausgehend von diesem Befund entwickelten Wissenschaftler von Squibb das erste einer neuen Generation von hochwirksamen blutdrucksenkenden Arzneimitteln, die sogenannten ACE-Hemmer, wie Captopril (Handelsname Capoten ), das seither viele Leben gerettet hat.

Eigenschaften von Bradykinin

  • Beteiligung an der Schmerzerzeugung
  • Beteiligung an allergischen und anaphylaktischen Reaktionen
  • Mediator von Angioödemen (z.B. Hereditäres Angioödem)
  • Mediator von Entzündungen (ähnlich: Histamin)
  • Gefäßerweiterung
  • Kontraktion der Bronchial-, Darm- und Uterus-Muskulatur
  • Steigerung der Gefäßpermeabilität
  • Chemotaktische Wirkung auf Leukozyten

Gifte der Stechimmen (z.B. Bienengift) enthalten zum Großteil Bradykinin.

Referenzen

  1. UniProt P01042
  2. Dendorfer A, Wolfrum S, Wagemann M, Qadri F, Dominiak P. Pathways of bradykinin degradation in blood and plasma of normotensive and hypertensive rats. Am J Physiol Heart Circ Physiol 2001;280:H2182-8. Fulltext PMID 11299220
  3. Kuoppala A, Lindstedt KA, Saarinen J, Kovanen PT, Kokkonen JO. Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma. Am J Physiol Heart Circ Physiol 2000;278(4):H1069-74. Fulltext PMID 10749699
  4. Parpura et al., Glutamate-mediated astrocyte−neuron signalling, Nature 1994 Article
Bitte beachten Sie den Hinweis zu Gesundheitsthemen!
 
Dieser Artikel basiert auf dem Artikel Bradykinin aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.