Meine Merkliste
my.chemie.de  
Login  

Fluoreszenzanzeige



 

Eine Fluoreszenzanzeige (auch Vakuum-Fluoreszenzanzeige oder Digitron-Anzeige genannt) ist eine Elektronenröhre und basiert auf dem Leuchten von bestimmten Materialien (d. h. der Fluoreszenz), wenn auf diese Elektronen auftreffen.

Weiteres empfehlenswertes Fachwissen

Inhaltsverzeichnis

Funktionsprinzip

 Vakuumfluoreszenzanzeigen (engl. Vacuum Fluorescent Display, VFD) sind zwischen einer durchsichtigen Glasscheibe und einer rückseitigen Basisplatte, die üblicherweise ebenfalls aus Glas besteht, aufgebaut. Die Platten sind am Rand mit Glaslot verbunden, das dazwischen liegende Anzeigesystem befindet sich im Hochvakuum. Vor den die Anoden bildenden Leucht-Segmenten ist ein dünner, mit Oxiden beschichteter Wolfram-Heizdraht gespannt (direktbeheizte Kathode), von diesem werden thermisch Elektronen emittiert (Glühemission) und fliegen bei anliegender Spannung zu den Anoden-Segmenten. Die Leuchtstoffschicht („Phosphor“), mit der die Anoden bedeckt sind, beginnt beim Auftreffen der Elektronen zu leuchten wie im „Magischen Auge“ oder in Bildröhren. Direkt vor den Anodensegmenten ist ein Gitter angebracht, mit dem der Elektronenstrom gesteuert bzw. die Elektronen abgestoßen werden können (siehe auch Triode).
Ein Segment der Anzeige leuchtet, wenn sowohl das Gitter als auch die Anode elektrisch positiv gegenüber der Kathode sind. Die Spannung zwischen Anode und Kathode liegt zwischen ca. 10 und 50 Volt.

Elektrische Ansteuerung

Die Spannung zwischen Anode und Kathode bestimmt die gleichmäßige Ausleuchtung und die Lebensdauer. Da der Heizdraht stromdurchflossen ist, liegen seine beiden Enden auf unterschiedlicher Spannung; daraus würde sich bei Gleichstrom-Betrieb eine ungleichmäßige Helligkeit der Anzeige ergeben. Daher wird der Heizdraht meist mit einer Wechselspannung betrieben.

Während früher zur Erzeugung der relativ hohen Betriebsspannungen von VFDs aufwendige Spannungswandler mit Transformatoren verwendet wurden, werden diese Spannungen heute meist mit dafür speziell hergestellten ICs oder mit einfacheren Spannungswandlern erzeugt, oder es werden VFDs mit geringeren Anodenspannungen, die ohnehin zur Verfügung stehen, betrieben (z. B. 12 V).

Um zu vermeiden, dass man für jedes Segment eine eigene Leitung mit eigener Ansteuerspannung braucht (bei 10 Ziffern in Siebensegmentanzeige mit Dezimalpunkten wären das 10 mal 8 = 80 Leitungen!), werden VFDs normalerweise im Zeitmultiplexverfahren angesteuert. Dafür sind die Anoden der gleichen Segmente aller Ziffern verbunden (z. B. alle Anoden für den oberen Querstrich). Nun wird zuerst das Gitter für die erste Ziffer kurz auf positive Spannung gelegt und diejenigen Anoden, die bei der ersten Ziffer leuchten sollen; alle anderen Ziffern bleiben dunkel. Das gleiche erfolgt dann in schneller zeitlicher Abfolge für die zweite und alle folgenden Ziffern. Für das erwähnte Beispiel einer Anzeige mit 10 Ziffern sind also nur mehr 8 + 10 = 18 Leitungen für die Anoden und Gitter nötig. Da die Ziffern sehr rasch hintereinander aufleuchten, erscheint die Anzeige nahezu flimmerfrei.

Die zeitliche Abfolge der Ansteuerung wird durch Integrierte Schaltkreise (Ansteuerschaltkreise bzw. Treiberschaltkreise) gesteuert, die oft mit dem VFD eine Einheit bilden und eine serielle oder parallele Schnittstelle besitzen.

Neuerdings gibt es auch „Chip In Glass“-Anzeigen mit in der Anzeigeröhre integrierten Treiber-ICs, um die Anzahl der herauszuführenden Anschlußdrähte weiter zu reduzieren. So lassen sich auch Punktmatrix-Anzeigen mit vielen Leuchtpunkten realisieren. Der Treiberbaustein in der Röhre wird dabei direkt durch serielle Datenübertragung angesteuert.

Historisches

  Die VFD-Technik wurde in den 1960er-Jahren in Japan bis zur industriellen Reife entwickelt. Fluoreszenzanzeigen lösten die wie Glimmlampen funktionierenden Nixie-Röhren ab. Es gab sie zunächst als zylindrische Röhre zur Anzeige einer einzelnen, aus Segmenten darstellbaren Ziffer, von daher leitet sich auch der Name „Digitron“ ab (englisch „digit“ = Ziffer, Dezimalstelle; die Silbe „-tron“ ist Wortbestandteil vieler Typen von Elektronenröhren). Später wurden Fluoreszenzanzeigen auch als flaches komplexes Anzeigeelement hergestellt. Vor allem bei Anwendungen für Bürorechner blieb die Bezeichnung "Digitron"-Anzeige aber weiterhin erhalten.

Anwendungen

  Die modernen Fluoreszenzanzeigen bieten aufgrund der flachen Bauweise einen weiten Blickwinkel und gestochen scharfe, klare Zeichen und grafische Symbole. Auch Bargraph-Anzeigen zur Aussteuerungsanzeige sind realisierbar. Vor den Anzeigen ist meist eine Filterscheibe montiert, um den Kontrast zwischen angesteuerten und dunklen Segmenten zu erhöhen.

Derzeit gibt es Farbdisplays mit bis zu neun verschiedenen Farben; die meist verwendete blaugrüne Farbe hat den Vorteil einer hohen Lichtausbeute.

Vorteile von Fluoreszenzanzeigen im Vergleich zu Flüssigkristallanzeigen sind eine hohe Leuchtdichte von bis zu mehr als 1000 cd/m2 ohne Hintergrundbeleuchtung und ein weiter Bereich der Betriebstemperatur.

Zusammen mit der hohen Zuverlässigkeit und relativ langen Lebensdauer haben diese Vorteile beispielsweise zum breiten Einsatz in der Unterhaltungselektronik, wie zum Beispiel in Videorekordern, geführt. Auch in Automobilen werden sie eingesetzt, obwohl ihr Aufbau stoßempfindlicher als z. B. derjenige von Flüssigkristall-Displays oder Leuchtdioden-Anzeigen ist.

Für batteriebetriebene tragbare Geräte sind Fluoreszenzanzeigen hingegen wegen des im Vergleich zu unbeleuchteten Flüssigkristallanzeigen höheren Leistungsbedarfes und der benötigten höheren Spannungen weniger geeignet. Nachteilig ist hier auch die größere Dicke, die nicht unwesentlich durch die erforderlichen dicken Glasscheiben (Vakuum!) bedingt ist.

 
Dieser Artikel basiert auf dem Artikel Fluoreszenzanzeige aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.