Meine Merkliste
my.chemie.de  
Login  

Kernphysik



Die Kernphysik ist der Teilbereich der Physik, der sich mit dem Aufbau und dem Verhalten von Atomkernen beschäftigt.

Die Hochenergiephysik und Elementarteilchenphysik haben sich aus der Kernphysik heraus entwickelt und wurden daher früher mit zu ihr gezählt; die eigentliche Kernphysik wurde dann zur Unterscheidung manchmal als Niederenergie-Kernphysik bezeichnet.

Die auf der Kernspaltung beruhenden Technologien zur Energiegewinnung (siehe auch Kernenergie) und für Waffenzwecke haben sich aus bestimmten Forschungsergebnissen der Kernphysik entwickelt. Es ist aber irreführend, dieses technisch-wirtschaftlich-politische Gebiet als "die Kernphysik" zu bezeichnen.

Inhaltsverzeichnis

Beschreibung

Kernphysik wird sowohl theoretisch als auch experimentell betrieben. Ihr wichtigstes theoretisches Hilfsmittel ist die Quantenmechanik; auch die Spezielle Relativitätstheorie wird benötigt. Experimentelle Werkzeuge sind z. B. Teilchendetektoren und Strahlungsdetektoren, Teilchenbeschleuniger und auch die Vakuumtechnik.

Die Aufgabe der "reinen" Kernphysik im Sinne von Grundlagenforschung ist die Aufklärung der Kernstruktur, also der Einzelheiten des Aufbaus der Atomkerne. Hierzu werden beispielsweise spontane Umwandlungen der Kerne (Radioaktivität), Streuvorgänge an Kernen und Reaktionen mit Kernen untersucht.

Aus der Untersuchung dieser Erscheinungen haben sich auch viele Anwendungen entwickelt, beispielsweise

  • Energiegewinnung aus Kernreaktionen mittels Kernreaktoren und Kernfusionsreaktoren,
  • medizinische Diagnose- und Therapieverfahren (etwa Kernspintomographie, Szintigraphie, Brachytherapie),
  • Verfahren zur vorbeugenden Schadenserkenung in Rohrleitungen mittels Gammastrahlung,
  • Herstellung von Materialoberflächen mit besonderen Eigenschaften mittels Ionenimplantation,
  • Hilfsmethoden für andere Forschungsgebiete wie etwa die Radiokohlenstoffdatierung in der Archäologie oder die Kosmochemie.

Typische Größenordnungen im Bereich der Atomkerne und Kernprozesse sind

  • Längen: 1 Fermi = 1 fm = 10-15 m
  • Energie: 100 keV bis 100 MeV

Die Bausteine der Kerne sind die Nukleonen: Neutronen und Protonen. Die Anzahl Z der Protonen in einem Kern ist gleich der Anzahl der Elektronen im neutralen Atom. Z bestimmt die chemischen Eigenschaften der Atome und heißt deshalb Ordnungszahl (oder bezogen auf den Atomkern auch Kernladungszahl). Die Masse des Atomkerns wird durch die Anzahl A aller Nukleonen bestimmt und wird deshalb auch Massenzahl genannt. Wie man sehen kann, ist die Neutronenzahl N = A - Z. Atome mit gleicher Ordnungszahl, aber unterschiedlicher Massenzahl werden Isotope genannt. Die physikalischen Eigenschaften des Kerns hängen sowohl von der Ordnungszahl als auch von der Neutronenzahl ab, die chemischen Eigenschaften (fast) nur von der Ordnungszahl.

Bei der Beschreibung von Kernreaktionen und Streuvorgängen ist der Begriff des Wirkungsquerschnitts von Bedeutung. Der Wirkungsquerschnitt ist ein Maß für die Wahrscheinlichkeit einer Wechselwirkung.

Näheres siehe Hauptartikel Atomkern.

Geschichte

Antoine Henri Becquerel, Pierre Curie und Marie Curie erhielten für ihre Versuche zur Radioaktivität, die man als den historischen Beginn der modernen Kernforschung bezeichnen könnte, 1903 den Nobelpreis für Physik.

Radioaktivität ist immer mit der Umwandlung eines chemischen Elements in ein anderes verbunden. Dies wurde von Ernest Rutherford entdeckt, wofür er 1908 den Nobelpreis für Chemie erhielt.

Der Rutherfordsche Streuversuch, bei dem Alpha-Teilchen an Goldfolie gestreut werden, von Geiger, Marsden und Rutherford im Jahr 1909 markiert einen Wendepunkt in der Vorstellung vom Aufbau der Atome. Rutherfords Interpretation der Ergebnisse führte zur Vorstellung des Atomkerns. Im Kern ist fast die gesamte Masse des Atoms vereinigt, jedoch nimmt er nur einen sehr kleinen Volumenanteil des Atoms ein.

1919 gelang Rutherford durch Beschuss von Stickstoff mit Alphastrahlung die erste künstliche Elementumwandlung: es entstand Sauerstoff. Es handelte sich um die Kernreaktion 14N(α,p)17O.

Das Verständnis der Bindungsenergie der Atomkerne, zuerst halbempirisch 1935 in der Bethe-Weizsäcker-Formel ausgedrückt, bedeutete einen entscheidenden Fortschritt. Grundlage für die Formel war das Tröpfchenmodell des Atomkerns (Bohr 1936). Mit Hilfe der Bethe-Weizsäcker-Formel konnte gezeigt werden, dass sowohl bei bestimmten Kernfusionen als auch bei bestimmten Kernspaltungen Energie freigesetzt wird. Das Tröpfchenmodell vermag z.B. die Kernspaltung gut zu erklären.

Eine quantenmechanische Beschreibung des Kernaufbaus, die insbesondere die mit Ordnungs- und Massenzahl systematisch wechselnde Stabilität der Kerne erklären kann, wurde erst später mit dem Schalenmodell (Wigner, Goeppert-Mayer und Jensen 1949) gefunden.

Kernspaltung

Otto Hahn und Lise Meitner entdeckten 1938, dass durch Bestrahlung mit Neutronen Urankerne gespalten werden (induzierte Kernspaltung). Später wurde nachgewiesen, dass bei diesem Prozess ein großer Energiebetrag sowie weitere Neutronen freigesetzt werden, so dass eine Spaltungs-Kettenreaktion und damit die Freisetzung technisch nutzbarer Energiemengen in kurzer Zeit, also bei hoher Leistung, möglich ist. Darauf begannen, etwa gleichzeitig mit dem II. Weltkrieg, Forschungsarbeiten zur Nutzung dieser Energie für zivile oder militärische Zwecke. In Deutschland arbeiteten unter anderem Carl Friedrich von Weizsäcker und Werner Heisenberg an der Entwicklung eines Kernreaktors; die Möglichkeit einer Kernwaffe wurde gesehen, aber nicht ernsthaft verfolgt, weil die voraussehbare Entwicklungsdauer für den herrschenden Krieg zu lang erschien. In Los Alamos forschten im Manhattan-Projekt unter der Leitung von Robert Oppenheimer die Physiker Enrico Fermi, Hans Bethe, Richard Feynman, Edward Teller, Felix Bloch und andere. Obwohl dieses Projekt von Anfang an der Waffenentwicklung diente, führten seine Erkenntnisse auch zum Bau der ersten zur Energiegewinnung genutzten Kernreaktoren.

Öffentliche Diskussion

Kaum ein Gebiet der Physik hat durch seine Ambivalenz der friedlichen als auch zerstörerischen Nutzung die öffentliche Diskussion mehr angeheizt: für Fortschrittskritiker war die Kernphysik die Büchse der Pandora, für Fortschrittsgläubige eine der nützlichsten Entdeckungen des 20. Jahrhunderts. Die Kernspaltungstechnik war der Auslöser einer neuen Wissenschaftsethik (Hans Jonas, Carl Friedrich von Weizsäcker). Die politische Auseinandersetzung um den vernünftigen und verantwortbaren Umgang mit der Kernenergie findet bis heute in der Auseinandersetzung um den Kernenergieausstieg Deutschlands statt.

Siehe auch

 
Dieser Artikel basiert auf dem Artikel Kernphysik aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.