Starke Transistoren aus organischem Molekül
Ein neues Molekül haben Chemiker der Universität Würzburg und Forscher der BASF SE entwickelt: Mit ihm lassen sich leistungsstarke organische Dünnfilm-Transistoren für die Mikroelektronik herstellen.

Neu entwickelt von Chemikern der BASF SE und der Universität Würzburg: das Molekül Octachlorperylendiimid. Es ergibt einen leistungsstarken organischen Dünnfilm-Transistor.
Marcel Gsänger
Weltweit wird an Transistoren aus organischen Materialien geforscht, die sich als hauchdünne Schichten in elektronische Bauteile einbringen lassen. Transistoren sind Bestandteile elektronischer Schaltungen, die in der Nachrichtentechnik oder in Computern eingesetzt werden.
Organische Dünnfilm-Transistoren sind heute zwar bei weitem nicht so leistungsfähig wie Silizium-Transistoren. Dafür bieten sie die Möglichkeit, kostengünstig auf flexiblen Unterlagen und großen Flächen angewandt zu werden. So lassen sich biegsame Bauteile und damit neue Anwendungen realisieren -zum Beispiel flexible Displays.
Gemeinsam mit Forschern der BASF hat der Würzburger Chemie-Professor Frank Würthner ein neues viel versprechendes organisches Molekül entwickelt: Octachlorperylendiimid.
Bei Tests an der Universität Stanford (USA) erwies sich das neue Molekül als besonders leistungsfähig und luftstabil. Damit eignet es sich gut für die Vakuum prozessierte Herstellung elektronischer Schaltungen.
Luftstabil durch Elektronenarmut
Gut funktionierende organische Transistoren für den Transport von p-Ladungsträgern gibt es schon viele. Eine Herausforderung stellt aber der Transport von n-Ladungsträgern dar. "Ein geeigneter Ersatz von acht Wasserstoffatomen war hier die entscheidende Maßnahme. Hierdurch werden die Moleküle elektronenärmer und somit viel stabiler an der Luft", erklärt Dr. Martin Könemann von der BASF SE.
Auffällig: Das neue Transistormaterial funktioniert nach 20 Monaten an der Luft immer noch gut. Das ist bemerkenswert, weil organische Transistoren oft durch Sauerstoff angegriffen und beschädigt werden.
Backsteinartiger Verbund bringt Vorteile
Die verbesserten Eigenschaften sind auch bedingt durch die Anordnung der Moleküle im Festkörper: Wird das Material auf einen Trägerstoff aufgedampft, lagert es sich dort in Schichten ab. Darin ordnen sich die einzelnen Moleküle automatisch zu einem backsteinartigen Verbund an.
In diesem Verbund überlappen sich die Moleküle weitgehend. Dabei bilden sie so genannte Wasserstoff-Brücken untereinander aus; weitere erwünschte Wechselwirkungen kommen dazu. All das führt laut Professor Würthner zur erhöhten Beweglichkeit für Elektronen und zur verstärkten Widerstandsfähigkeit gegen Sauerstoff-Attacken.
Originalveröffentlichung: M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner; "A Crystal-Engineered Hydrogen-Bonded Octachloroperylene Diimide with a Twisted Core: An n-Channel Organic Semiconductor"; Angewandte Chemie 2010, 122, 752-755
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

Auf Pflanzenbasis statt mit Erdöl – neue biobasierte Materiallösungen im Pilotmaßstab greifbar machen - Vom Labor in den Pilotmaßstab – ein steiniger Weg
August_Fürchtegott_Winkler

CiK Solutions GmbH - Karlsruhe, Deutschland
Strom aus dem Meer? - Triboelektrischer Nanogenerator zur Energiegewinnung aus Wasserwellen
