Meine Merkliste
my.chemie.de  
Login  

„Bethe Strings“ als Vielteilchen-Quantenzustände erstmals experimentell nachgewiesen

Synthese von quasi eindimensionalen Magneten und deren Untersuchung mittels optischer Spektroskopie in extrem hohen Magnetfeldern führte zum Erfolg

12.02.2018

© Universität Augsburg/IfP/EP V

In SrCo₂V₂O₈ bilden die Kobalt-Ionen (Co²⁺) im Inneren einer Kette aus kantenverknüpften Sauerstoff-Oktaedern eine quasi-eindimensionale Elekronenspin-Kette mit Spin S = ½.

„Bethe Strings“ sind Anregungen stark gebundener Elektronen-Spins in eindimensionalen Quantenspinsystemen. Benannt sind diese Quantenspinzustände nach dem Physiker Hans Bethe, der sie 1931 erstmals theoretisch beschrieben hat. Erstmals experimentell nachgewiesen wurden "Bethe Strings" jetzt von den Augsburger Physikern Prof. Dr. Alois Loidl und Dr. Zhe Wang, die gemeinsam mit ihren Kooperationspartnern aus Berlin, Dresden, Mumbai, Nijmegen und San Diego darüber in Nature berichten.

1933 vor den Nationalsozialisten in die USA geflohen und als Leiter der Theorieabteilung in Los Alamos an der Entwicklung der Atombombe mitwirkend, galt Hans Bethe als einer der führenden Kernphysiker. Den Physik-Nobelpreis erhielt er 1961 für die Theorie über die Energieerzeugung in Sternen. In seiner frühen wissenschaftlichen Karriere befasste sich Bethe allerdings intensiv mit Festkörperphysik, insbesondere mit der Elektronentheorie von Metallen.

So veröffentlichte er 1931 in der "Zeitschrift für Physik" einen Aufsatz mit dem Titel „Eigenwerte und Eigenfunktionen der linearen Atomkette“ über Quantenspinzustände in einer Dimension. Auf der Basis einer Theorie von Werner Heisenberg und mit dem sogenannten Bethe-Ansatz, einer Methode, die theoretisch später vielfältig weiterentwickelt wurde und heute ein wichtiges mathematisches Werkzeug der statistischen Physik ist, gelang ihm eine exakte Lösung des eindimensionalen quantenmechanischen Vielteilchensystems. Bei einem solchen System handelt es sich um eine eindimensionale Kette von Atomen auf festen Positionen, die einen Elektronen-Spin S = ½ tragen. Vielteichen-"String"-Zustände entsprechen Anregungen gekoppelter quantenmechanischer Spins, also magnetischer Eigendreh-Momente der Elektronen, die fest aneinander gebunden sich nahezu frei in der eindimensionalen Kette bewegen können.

Das Fehlen passender eindimensionaler Materialien und geeigneter experimenteller Methoden machte die experimentelle Überprüfung derartiger Vielteilchen-"String"-Zustände und den Nachweis ihrer Anregungen bislang unmöglich. Extreme Fortschritte in der Materialsynthese einerseits und die Entwicklung von optischer Spektroskopie im Terahertz-Frequenzbereich in sehr hohen Magnetfeldern andererseits ermöglichten nun erstmals diesen experimentellen Nachweis.

In einem ersten Schritt wurden am Helmholtz-Zentrum in Berlin und im Hochfeld-Magnetlabor des Helmholtz-Zentrums Dresden-Rossendorf SrCo₂V₂O₈-Kristalle synthetisiert und charakterisiert. Diese Kristalle, in denen die Kobalt-Ionen eine eindimensionale Spinkette mit Spin = ½ bilden, wurden dann von Loidl und Wang im Hochfeld-Magnetlabor der Radboud-Universiteit in Nijmegen in einem weiten Magnetfeldbereich von 4 bis 28 Tesla (zum Vergleich: das Erdmagnetfeld in Mitteleuropa hat eine Stärke von ungefähr 0.00005 Tesla) untersucht. Die dabei entdeckten "String"-Anregungen konnten schließlich von Wissenschaftlern der University of California in San Diego mit dem Bethe-Ansatz berechnet und exakt beschrieben werden.

"Der von uns gelieferte Beweis der Existenz und der Stabilität dieser exotischen Spinstrukturen ist zunächst mit Blick auf die weitere Erforschung der Spindynamik im Bereich des Quantenmagnetismus ein enormer Fortschritt", erläutert Loidl. Dies gelte darüber hinaus aber auch für zahlreiche weitere Bereiche, für die die Anwendung und Weiterentwicklungen des Bethe-Ansatzes von herausragender Bedeutung seien – angefangen bei kalten Quantengasen über die String-Theorie in der Elementarteilchenphysik bis hin zu Problemen in Quanten-Informationssystemen.

Fakten, Hintergründe, Dossiers
  • Elektronenspin
  • Vielteilchensysteme
  • optische Spektroskopie
Mehr über Uni Augsburg
  • News

    Anregungen magnetischer Valenzbindungen

    Das Streben magnetischer Momente, sich gegenseitig auszurichten, führt in Magneten zu stabiler magnetischer Ordnung. Wenige Magneten widersetzen sich jedoch diesem Trend. Selbst beim Abkühlen zum Temperaturnullpunkt ordnen sich ihre Momente nicht starr, sondern bilden einen flüssigkeitsarti ... mehr

    Hochflüchtige Gase sicherer durch „Kinetisches Einfangen“ lagern und transportieren

    Die Speicherung hochflüchtiger Gase ist nach wie vor eine große technologische Herausforderung – nicht zuletzt mit Blick auf mobile Anwendungen wie etwa methan- oder wasserstoffgetriebene Fahrzeuge. Bisher bekannte Speichermaterialen leiden unter zu geringer Bindungskraft und/oder Beladungs ... mehr

    TFB macht unsichtbares Licht sichtbar

    Festkörperchemiker der Universität Augsburg haben gemeinsam mit Kollegen aus Frankfurt/M. und Houston (Texas) den Stoff TFB vorgestellt – ein völlig neues Material, das aus unsichtbarem Licht sichtbares macht und noch mehr kann. TFB steht für Zinnfluorooxoborat bzw. Sn[B₂O₃F₂]. Die Herstell ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.