Meine Merkliste
my.chemie.de  
Login  

Molekularer Motor: Drehung auch bei Kälte

26.11.2018

A. Gerwien, LMU

Drei durch sichtbares Licht angetriebene Teilschritte reichen aus, um eine vollständige Rotation zu erreichen.

LMU-Chemiker haben den ersten molekularen Motor entwickelt, der nur mit Licht als Antrieb auskommt und temperaturunabhängig betrieben werden kann.

Molekulare Motoren, die durch externe Energiezufuhr hin gezielte Drehbewegungen ausführen, sind eine wichtige Grundlage für zukünftige Anwendungen in der Nanotechnologie. Vielversprechende Kandidaten für solche Motoren sind Moleküle, die unter Lichteinfluss ihre Struktur ändern. Allerdings benötigen alle bisherigen lichtgetriebenen molekularen Motoren zusätzliche, durch Wärme angetriebene Reaktionen und sind deshalb von der Umgebungstemperatur abhängig. LMU-Chemiker Henry Dube ist nun ein entscheidender Durchbruch gelungen: Mit seinem Studenten Aaron Gerwien hat er den ersten molekularen Motor entwickelt, der vollständig lichtgetrieben und damit temperaturunabhängig ist – bei tiefen Temperaturen ist er sogar schneller. Diese einzigartige Eigenschaft könnte die Einsatzmöglichkeiten zukünftiger Nanomaschinen wesentlich erweitern.

Grundvoraussetzung für einen funktionierenden molekularen Rotationsmotor ist eine durch Energiezufuhr erzeugte gerichtete Drehbewegung. Dabei führen mehrere Drehschritte zu einer vollständigen 360 Grad Rotation eines bestimmten Molekülteils um einen anderen. Um zu verhindern, dass sich das Molekül wieder zurückdreht, benötigen alle bisher entwickelten molekularen Motoren sogenannte Ratschenschritte: Darunter versteht man Zwischenschritte, die das Molekül nach einem Drehschritt so verändern, dass die Rückreaktion blockiert wird. Diese Ratschenschritte werden normalerweise durch Wärme induziert. Deshalb laufen die Motoren umso langsamer, je tiefer die Umgebungstemperaturen sind und bleiben bei Kälte schließlich stehen.

Der neue Motor basiert wie frühere von Dube entwickelte Motorsysteme auf dem Molekül Hemithioindigo. Dieses Molekül besteht aus zwei unterschiedlichen Kohlenwasserstoff-Hälften, die über eine chemische Doppelbindung miteinander verbunden sind. „Wir haben es nun geschafft, das Molekül so zu modifizieren, dass drei Teilreaktionen ausreichen, um eine vollständige Rotation des einen Molekülteils um den anderen zu erzielen“, sagt Dube. Alle drei Teilschritte der Drehung werden durch sichtbares Licht angetrieben und kommen ohne thermische Ratschen-Zwischenschritte aus. Alle drei Teilreaktionen werden durch Kühlung sogar effizienter, deshalb kann der neue Motor bei tieferen Temperaturen schneller werden anstatt langsamer. „Die Teilschritte bestehen aus drei unterschiedlichen Photoreaktionen, von denen wir zwei erst dieses Jahr zum ersten Mal direkt experimentell bewiesen haben“, erklärt Dube. Das einzigartige Verhalten des Motors und sein neuartiger Mechanismus werden es nach Überzeugung der Wissenschaftler in Zukunft ermöglichen, molekulare Maschinen zu bauen, die wegen ihrer Temperaturunempfindlichkeit neue Einsatzmöglichkeiten eröffnen werden, die mit herkömmlichen molekularen Motoren unmöglich sind.

Fakten, Hintergründe, Dossiers
  • Nanomaschinen
  • Moleküle
  • Hemithioindigo
  • Photoreaktionen
Mehr über LMU
  • News

    Teilchenbeschleunigung im Taschenformat

    Münchner Physiker haben ein Miniaturmodell für die sogenannte Plasma-Wakefield-Beschleunigung etabliert und schaffen damit eine breitere Basis, um eine neue Generation von Beschleunigern zu entwickeln. Wer verstehen möchte, wie unsere Welt auf ganz elementarer Ebene funktioniert, sollte ein ... mehr

    Ein Transistor für alle Fälle

    Ob Handy, Kühlschrank oder Flugzeug: Transistoren sind überall verbaut. LMU-Physiker haben jetzt einen nanoskopisch kleinen Transistor aus organischem Halbleitermaterial entwickelt, der sowohl bei niedrigem als auch hohem Strom bestens funktioniert. Transistoren sind Halbleiter-Bauelemente, ... mehr

    Freischwebende Halbleiter

    Neue organische Halbleitermaterialien, die in den vergangenen Jahren gefunden wurden, versprechen bei sehr guten elektrischen Eigenschaften eine einfachere und billigere Herstellung, ohne dass dabei seltene Elemente benötigt werden. Dies erlaubt eine großindustrielle Produktion, beispielswe ... mehr

  • Universitäten

    Ludwig-Maximilians-Universität München (LMU)

    Machen Sie sich ein Bild von uns ─ von der Großstadtuniversität mitten in München. Die Ludwig-Maximilians-Universität (LMU) München ist eine der führenden Universitäten in Europa mit einer über 500-jährigen Tradition. Unseren Erfolg in der Exzellenzinitiative nutzen wir, um das Profil ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.