15.11.2021 - Forschungszentrum Jülich GmbH

Nano-Domino mit Molekülen

Wichtiger Schritt hin zu einer molekularen Fertigung in drei Dimensionen

Vor drei Jahren gelang es Jülicher Physikern, ein einzelnes flaches Molekül kontrolliert aufzurichten. Die Ergebnisse erschienen damals in der Fachzeitschrift Nature. Nun haben sie es nach monatelangem Experimentieren wieder umgeworfen. Die gewonnenen Einblicke sind ein wichtiger Schritt hin zu einer molekularen Fertigung in drei Dimensionen.

Die Idee, elektrische Bauelemente und Schaltungen auf der Ebene der Atome und Moleküle ähnlich wie größere Maschinen Stück für Stück zusammenzusetzen, ist eines der zentralen Ziele der Nanotechnologie. Das aktuelle Ergebnis, das Jülicher Forschende mit Partnern der englischen Universität Warwick erzielt haben, eröffnet dafür nun neue Wege – beispielsweise um ultraempfindliche Sensoren oder Quantenpunkte zur Speicherung von Quanteninformationen in Quantencomputern zu realisieren. Dr. Christian Wagner, Leiter der Forschungsgruppe „Molecular Manipulation“, spricht über die neuesten Ergebnisse.

Dr. Christian Wagner, ein Molekül umschubsen, das klingt zunächst einmal nicht außerordentlich kompliziert. Wo liegen die Schwierigkeiten?

Natürlich ist es nicht schwierig, kleine, zerbrechliche Dinge irgendwie kaputt zu machen. Unser Ziel war es jedoch, herauszufinden, exakt wie stabil so ein stehendes Molekül wirklich ist. Dabei muss man sich, wie bei Bruchtests, langsam an den kritischen Punkt herantasten. In unserem Fall haben wir die Temperatur schrittweise erhöht und damit das Molekül mehr und mehr durchgeschüttelt, bis es schließlich umgefallen ist. Eine einzige solche Messung erlaubt zwar schon eine grobe Abschätzung der Stabilität, aber für die nötige Genauigkeit mussten wir das Molekül mehrere hundert Mal neu aufrichten und umwerfen. Das ist wie beim Würfeln: Erst wenn man oft genug gewürfelt hat, merkt man, ob die Würfel gezinkt sind.

Darüber hinaus ist es schwierig überhaupt festzustellen, wann das Molekül umfällt. Die Spitze des Mikroskops ist im Vergleich zu einem einzelnen Molekül riesig und stabilisiert es durch die elektromagnetische Wechselwirkung, solange sie in seiner Nähe ist. Andererseits muss die Spitze genau über dem Molekül sein, damit wir beobachten können, ob es noch steht. Anders als in der Quantenmechanik üblich, ändert sich bei diesem Experiment der Zustand also nur wenn wir nicht hingucken. Daher haben wir eine Vorgehensweise entwickelt, bei der die Spitze im Wechsel zurückgezogen und wieder an das Moleküle angenähert wird. Augen zu – Augen auf, sozusagen.

Wie kann man sich den Vorgang auf dieser winzigen Skala ganz praktisch vorstellen?

Ganz einfach: Wie ein Baum im Sturm. Statt der Windgeschwindigkeit erhöhen wir die Temperatur, aber der Effekt ist derselbe. Das Molekül schwankt mit immer stärkeren Ausschlägen, bis es irgendwann umfällt.

Inwiefern ist das Molekül-Domino auch für industrielle Anwendungen relevant?

Fertigung auf der Nanoskala kennen wir vor allem aus der Halbleiterindustrie. Dort werden winzige Strukturen Schicht für Schicht aufgebaut und teilweise wieder weggeätzt. Möglicherweise können wir solche Bauteile in Zukunft aber auch noch auf anderen Wegen herstellen. Ein Ansatz ist, sie aus einzelnen Molekülen zusammensetzen, wie mit LEGO-Steinen. Die Moleküle fungieren dann als Sensor oder Schalter. Sie behalten ihre faszinierenden und nützlichen Eigenschaften aber oft nur, wenn sie eben nicht stabil und flach aufliegen, sondern allenfalls schwach an ihre Unterlage gekoppelt sind. Wir haben jetzt erstmals vermessen und berechnet, wie stabil solche fragilen Molekülkonfigurationen eigentlich sind und damit eine wichtige Voraussetzung für die weitere technologische Entwicklung geschaffen.

Eine interessante Anwendung sind Quantenbits aus senkrecht stehenden Molekülen. Was steckt dahinter?

Eine dieser faszinierenden und nützlichen Eigenschaften von Molekülen sind ihre Quantenzustände, die zum Beispiel zwei Zustände – Null und Eins – kodieren können. Wenn man es schafft diese ‚Quantenbits‘ zu koppeln und zu kontrollieren, könnten sie die Bausteine für Quantencomputer bilden, wie sie derzeit weltweit entwickelt werden. Und auch hier ist es von Vorteil, wenn die Moleküle exakt angeordnet und nur schwach an ihre Umgebung gekoppelt sind; beispielsweise als stehende Moleküle. Ob molekulare Qubits letztendlich das Rennen um die besten Quantencomputer gewinnen werden ist noch völlig offen, aber unsere Arbeit erweitert unser Verständnis dafür, wie es klappen könnte.

Fakten, Hintergründe, Dossiers
Mehr über Forschungszentrum Jülich
  • News

    Neue Regel für die Orbitalbildung bei chemischen Reaktionen entdeckt

    Quietschbunt, wolkenförmig oder kugelrund – Elektronenorbitale zeigen, wo und wie sich Elektronen um Atomkerne und Moleküle bewegen. In der modernen Chemie und Physik werden sie für die quantenmechanische Beschreibung und Vorhersage chemischer Reaktionen eingesetzt. Nur wenn sich die Orbita ... mehr

    Neue Einblicke in das Wechselspiel topologischer Isolatoren

    Wolfram-di-Tellurid (WTe2) hat sich zuletzt als vielversprechendes Material zur Realisierung topologischer Zustände bewährt. Diese gelten aufgrund ihrer einzigartigen elektronischen Eigenschaften als Schlüssel für neuartige „spintronische“ Bauelemente und Quantencomputer der Zukunft. Physik ... mehr

    Synapsen als Vorbild: Festkörperspeicher in neuromorphen Schaltungen

    Sie sind um ein Vielfaches schneller als Flash-Speicher und benötigen deutlich weniger Energie: Memristive Speicherzellen könnten die Energieeffizienz neuromorpher Computer revolutionieren. In diesen Rechnern, die sich die Arbeitsweise des menschlichen Gehirns zum Vorbild nehmen, funktionie ... mehr

  • Videos

    Zukunft ist unsere Aufgabe: Das Forschungszentrum Jülich

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung in den Bereichen Energie und Umwelt sowie Information und Gehirn. Es stellt sich drängenden Fragen der Gegenwart und entwickelt Schlüsseltechnologien für morgen. mehr

    Die (R)Evolution der Elektronenmikroskopie - So funktioniert PICO

    Das Elektronenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern. Es ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen und Fortschritte in Bereichen wie der Energieforschung oder den Informationstec ... mehr

  • Stellenangebote

    Chemielaborant / Chemisch-Technischer Assistent (w/m/d)

    Batterien bewegen uns und unsere Welt – sie starten unser Auto, lassen die Zeiger unserer Uhren laufen und sorgen dafür, dass wir überall Bilder mit unseren Smartphones machen können. Am Helmholtz-Institut Münster – Ionenleiter für Energie­speicher (IEK-12) – fokussieren wir uns auf die Ele ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Erfolgreiche Wissenschaft braucht mehr als gute Forschung. Damit öffentliche Förderprogramme ihre Ziele erreichen, Industriepartner und Forschungseinrichtungen gewinnbringend zusammenarbeiten und Forscher über Fördermöglichkeiten in ihrem Arbeitsfeld gut informiert sind, ist Sachverstand im ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr