Meine Merkliste
my.chemie.de  
Login  

Neuer Katalysator erzielt bisher unerreichte Aktivitäten

05.12.2018

© RUB, Kramer

Philip Weber und Thorsten Scherpf (links) waren maßgeblich an den Versuchen im Labor beteiligt.

Das neue System für die Produktion von aromatischen Stickstoffverbindungen könnte die Herstellung von Medikamenten und Pflanzenschutzmitteln effizienter machen.

Forscher haben einen neuen effizienten Katalysator für die Synthese sogenannter aromatischer Amine entwickelt, die zentrale Bausteine in vielen Medikamenten und Pflanzenschutzmitteln sind. Das System benötigt weniger Energie als herkömmliche Katalysatoren und ist selektiver, sodass auch weniger Abfallstoffe bei der Reaktion anfallen. Die Teams um Prof. Dr. Viktoria Däschlein-Gessner und Prof. Dr. Lukas Gooßen, die an der Ruhr-Universität Bochum im Rahmen des Exzellenzclusters Ruhr Explores Solvation kooperieren, beschreiben die Ergebnisse in der Zeitschrift Angewandte Chemie.

Angehängte organische Gruppen entscheidend

Aromatische Amine sind ringförmige stickstoffhaltige Verbindungen. Für ihre Herstellung müssen Bindungen zwischen Kohlenstoff- und Stickstoffatomen geknüpft werden. Ausgangsstoffe sind bestimmte Stickstoffverbindungen, die primären oder sekundären Amine, und ringförmige Verbindungen, die zunächst keinen Stickstoff enthalten und als Halogenaromaten bezeichnet werden. Die Reaktion ist nur mithilfe eines Palladium-Katalysators möglich. Durch Anhängen von organischen Gruppen – sogenannten Liganden – an den Metallkatalysator gelang es den Bochumer Chemikern, die Effizienz der Reaktion deutlich zu steigern.

Auf Anhieb effizienter als herkömmliche Systeme

„Durch das neu entwickelte Ligandensystem haben wir die Aktivität der Palladium-Katalysatoren derart gesteigert, dass die Reaktion schneller und effizienter gelingt als mit den über viele Jahre optimierten Systemen“, resümiert Viktoria Däschlein-Gessner. Forschungsgruppen auf der ganzen Welt arbeiten intensiv am gezielten Design solcher Liganden. „Aber nur selten reicht die Aktivität der Neuentwicklungen an die der über Jahrzehnte kontinuierlich optimierten Katalysatoren heran“, so Däschlein-Gessner weiter.

Das in Bochum neu konzipierte System erwies sich auf Anhieb als aktiver als die in der Industrie eingesetzten Systeme. Mit ihm können chlorhaltige Aromaten mit vielen unterschiedlichen Aminen bei Raumtemperatur innerhalb von einer Stunde gekoppelt werden. Mit den bisherigen Katalysatoren sind hierfür häufig mehrere Stunden sowie Temperaturen von 100 Grad Celsius und mehr erforderlich.

„Die etablierten Katalysatoren in diesem Bereich scheinen auch nach vielen Optimierungsrunden nicht mehr viel Verbesserungspotenzial zu haben“, sagt Lukas Gooßen. „Unser Ligandensystem eröffnet jedoch neue Möglichkeiten, die Effizienz zu steigern.“

Interesse aus der Industrie bekundet

Der Lehrstuhl für Organische Chemie I, den Lukas Gooßen leitet, und der Lehrstuhl für Anorganische Chemie II, den Viktoria Däschlein-Gessner leitet, arbeiten gemeinsam daran, Katalysatorstrukturen zu optimieren und zu testen, ob die entwickelten Systeme auch auf andere Reaktionstypen übertragbar sind. Ein Industriepartner ist bereits auf das neue System aufmerksam geworden und arbeitet daran, es marktreif zu machen und großtechnisch zu nutzen.

Fakten, Hintergründe, Dossiers
  • Liganden
  • Metallkatalysatoren
  • Palladium-Katalysatoren
Mehr über Ruhr-Universität Bochum
  • News

    Katalysatoren für kontrollierte Kaskadenreaktionen

    Kohlendioxid oder Stickoxide in nützliche oder ungiftige Stoffe umzuwandeln ist schwierig. Wolfgang Schuhmann will Wege finden und wird dabei von der EU unterstützt. Aus schädlichen Gasen im industriellen Maßstab nützliche Basischemikalien herstellen will Prof. Dr. Wolfgang Schuhmann mit ne ... mehr

    Mit mechanischer Kraft Biomasse umwandeln

    Eine der größten globalen Herausforderungen ist es derzeit, erneuerbare Quellen effizient einzusetzen, um in Zukunft den steigenden Bedarf an Energie und Chemikalien abzudecken. Biomasse ist dabei eine vielversprechende Alternative zu den bisherigen fossilen Quellen wie Kohle oder Erdöl. De ... mehr

    Silber-Nanopartikel in natürlichen Umgebungen untersuchen

    Wegen ihrer antibakteriellen Eigenschaften sind die Partikel in vielen Produkten im Einsatz. Ihre Wirkung auf die Umwelt ist weitestgehend unerforscht. Vor allem weil bislang geeignete Verfahren fehlten. Eine Methode, um das Verhalten von Silber-Nanopartikeln in natürlichen Gewässern zu unt ... mehr

  • Universitäten

    Ruhr-Universität Bochum (RUB)

    Mitten in der dynamischen, gastfreundlichen Metropolregion Ruhrgebiet im Herzen Europas gelegen, ist die Ruhr-Universität mit ihren 20 Fakultäten Heimat von 5.000 Beschäftigten und über 33.000 Studierenden aus 130 Ländern. Alle großen wissenschaftlichen Disziplinen sind auf einem kompakten ... mehr

  • q&more Artikel

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Prof. Dr. Klaus Gerwert

    Jg. 1956, studierte Physik in Münster und promovierte 1985 in biophysikalischer Chemie in Freiburg. Nach Stationen am Max-Planck-Institut für Molekulare Physiologie in Dortmund und am Scripps Research Institute in La Jolla, USA erhielt er 1993 einen Ruf auf die C4-Professur für Biophysik ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.