Meine Merkliste
my.chemie.de  
Login  

Reißverschluss auf Nano-Ebene

Neue Methode zur Nanographensynthese auf Metalloxidoberflächen

04.03.2019

FAU/Konstantin Amsharov

Fast wie ein Reißverschluss: die Nanographensynthese auf Titanoxid.

Für die Nanoelektronik sind kohlenstoffbasierte Nanostrukturen vielversprechende Materialien. Doch dafür müssten sie sich häufig auf nicht-metallischen Oberflächen bilden, was nur schwer möglich ist – bis jetzt: Wissenschaftler der FAU haben eine Methode gefunden, Nanographen auf Metalloxidoberflächen zu bilden. Ihre Ergebnisse, die im Rahmen des Sonderforschungsbereichs 953 – Synthetic Carbon Allotropes der Deutschen Forschungsgemeinschaft (DFG) entstanden sind, haben sie in der Fachzeitschrift Science veröffentlicht.

Zweidimensional, biegsam, reißfest, leicht, vielseitig einsetzbar – all diese Eigenschaften treffen auf den Stoff Graphen zu, der oft auch als Wundermaterial bezeichnet wird. Darüber hinaus verfügt diese kohlenstoffbasierte Nanostruktur über einzigartige elektrische Eigenschaften, was sie für die Nanoelektronik interessant macht. Abhängig von der Größe und der Form kann Nanographen leitend oder halbleitend sein – eine elementare Voraussetzung für den Einsatz in Nanotransistoren. Dank der guten elektrischen und thermischen Leitfähigkeit könnte es sowohl leitendes Kupfer als auch halbleitendes Silicium in zukünftigen Nanoprozessoren ersetzen.

Neu im Angebot: Nanographen auf Metalloxiden

Das Problem dabei: Um eine elektronische Schaltung herzustellen, müssen die Nanographen-Moleküle direkt auf einer isolierenden oder halbleitenden Oberfläche synthetisiert und zusammengebaut werden. Obwohl Metalloxide die besten Materialen dafür sind, im Gegensatz zu Metalloberflächen, ist die direkte Synthese von Nanographenen auf Metalloxidoberflächen jedoch nicht möglich, da sie chemisch weit weniger aktiv sind. Die Forscher müssten daher den Prozess bei einer hohen Temperatur durchführen, was zu vielen nicht-kontrollierbaren Nebenreaktionen führt. Wissenschaftler um Dr. Konstantin Amsharov vom Lehrstuhl für Organische Chemie II haben nun eine neue Methode entwickelt, um Nanographen auf nicht-metallischen Untergründen, also isolierenden Flächen oder Halbleitern, zu synthetisieren.

Die Bindung macht‘s

Hierbei machen sie sich die Kohlenstoff-Fluor-Bindung, die stärkste Kohlenstoffbindung, zu Nutze. Auf diese Weise wird ein mehrstufiger Prozess angestoßen: Dominoartig bilden sich die gewünschten Nanographene über Cyclodehydrofluorierung auf der Titanoxidoberfläche. Dabei entstehen nacheinander alle „fehlenden“ Kohlenstoff-Kohlenstoff-Bindungen, was an einen Reißverschluss erinnert, der sich schließt. So ist es den Forschern möglich, Nanographene auf Titandioxid, einem Halbleiter, zu erzeugen. Mit dieser Methode können sie nun auch die Form des Nanographens festlegen, indem sie die Anordnung der Vorläufermoleküle verändern: Dort, wo sie die Fluor-Atome platzieren, bilden sich die neuen Kohlenstoff-Kohlenstoff-Bindungen und schließlich Nanographen. Die Forschungsergebnisse zeigen zum ersten Mal einen Weg, kohlenstoffbasierte Nanostrukturen durch direkte Oberflächensynthese auf technologisch relevanten halbleitenden oder isolierenden Flächen herzustellen. „Diese bahnbrechende Erkenntnis bietet einen effektiven und einfachen Zugang zu den wirklich funktionierenden elektronischen Nanoschaltungen, die die vorhandene Mikroelektronik auf die Ebene der Nanometerskala bringen könnten“, erläutert Dr. Amsharov.

Fakten, Hintergründe, Dossiers
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Dem nanotechnologischen Traum nahe

    Einwandige, einheitliche Kohlenstoffnanoröhren (SWCNTs) herzustellen, gehört zu den großen Herausforderungen der Materialwissenschaft. Es ist möglich, sie mithilfe von Vorläufermolekülen, sogenannten Keimen, die das Wachstum vorgeben, zu erzeugen. Jedoch ist deren Synthese weitgehend unerfo ... mehr

    Nanopartikel mit neuartigen elektronischen Eigenschaften

    Die optischen und elektronischen Eigenschaften von Aluminiumoxid-Nanopartikeln, die eigentlich elektronisch inert und optisch inaktiv sind, können gesteuert werden. Das haben Forscher des Lehrstuhls für Organische Chemie II der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) herausg ... mehr

    Durchbruch für die Graphenforschung: Wissenschaftler im Zickzack-Fieber

    Graphen ist für den Einsatz in der Nanoelektronik ein vielversprechendes Material. Die elektronischen Eigenschaften hängen unter anderem stark davon ab, wie die Ränder der Kohlenstoffschicht beschaffen sind – besonders interessant sind Zickzack-Muster. Doch bisher ließ sich dieses Randmuste ... mehr

  • q&more Artikel

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.