Meine Merkliste
my.chemie.de  
Login  

Wenn ein Molekül Photonen sortiert

Organische Bauelemente für Quantennetzwerke

08.03.2019

MPL / Dominik Rattenbacher

Kohärente Wechselwirkung von Licht mit einem einzelnen, organischen Molekül

Fluoreszierende organische Moleküle sind allgemein als Pigmente bekannt oder finden in der Fluoreszenzmikroskopie in vielen Bereichen der Biologie Anwendung. Obwohl sie, wie jedes andere Molekül, quantenmechanische Objekte sind, die aus einer kleinen Zahl von Atomen bestehen, werden organische Moleküle normalerweise – auch nicht in Fachkreisen – mit Quantentechnologien in Verbindung gebracht. Der Grund hierfür ist, dass Moleküle aufgrund von internen Freiheitsgraden wie Rotationen oder Vibrationen anfällig für Störungen aus ihrer Umgebung sind. Dies kompromittiert die kohärente Entwicklung eines quantenmechanischen Systems. Physikern des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen ist es nun gelungen, ein organisches Molekül in ein fast perfektes Quantensystem mit nur zwei wohldefinierten Energieniveaus zu verwandeln. Die Experimente über die aktuell in Nature Physics berichtet wird, sind ein wichtiger Schritt, da sie einige Grundbausteine für Quantennetzwerke aus organischen Materialien demonstrieren.

Wissenschaftler in der Gruppe von Professor Vahid Sandoghdar am Max-Planck-Instituts für die Physik des Lichts haben die kohärente Wechselwirkung von Licht mit einem einzelnen, organischen Molekül aus der Gruppe der polycyclischen aromatischen Kohlenwasserstoffe um einen Faktor vierzig erhöht, indem sie das Molekül in einen mikroskopischen optischen Resonator platzierten. Der Effekt dieser nur etwa zwei Wellenlängen großen, optischen Struktur ist so dramatisch, dass die Forscher eine ganze Reihe von faszinierenden Effekten beobachten konnten: Ein Photon wird beispielsweise mit einer Effizienz von 99 Prozent reflektiert, so als ob das winzige Molekül ein Spiegel sei. Außerdem zeigt das Team, dass ein einzelnes Molekül die Phase eines Laserstrahls um fast 70 Grad verschieben kann. Ein besonders aufregendes Resultat ist, dass man Zugang zu starken Nichtlinearitäten im Einzelphotonenbereich bekommt. In diesem Regime ist die Antwort des Moleküls nicht mehr proportional zur Leistung des eingestrahlten, optischen Feldes, sie ändert sich je nachdem wie viele Photonen zu einem gegebenen Zeitpunkt auf das System treffen. Als Konsequenz verändert das Molekül die statistische Verteilung der Photonen in einem Laserstrahl.

Die experimentelle Realisierung dieser Messungen verlangt neueste Methoden der Nanofabrikation, um die hochqualitativen gekrümmten Mikrospiegel herstellen zu können. Außerdem ist sehr viel experimentelles Geschick gefragt, um Mikroresonatoren mit einer nanoskopischen Menge eines organischen Kristalls zu präparieren. Auch die Durchführung des Experiments stellt eine große Herausforderung dar, weil dieses bei einer Temperatur von -270°C durchgeführt werden muss, um die Wechselwirkung des Moleküls mit thermischen Anregungen der Umgebung zu minimieren. Trotz dieser niedrigen Temperaturen ist der optische Übergang des Moleküls nicht perfekt, der angeregte Zustand koppelt immer noch an eine Vielzahl von Übergängen. Hier kommt der Resonator ins Spiel. Das Photon zirkuliert mehrere tausend Mal zwischen den Spiegeln hin und her, so dass die Photon-Molekül-Kopplung 95 Prozent erreicht. Dem Team um Professor Sandoghdar gelingen zudem Messungen mit echten einzelnen Photonen, die in einem anderen Labor von einem zweiten Molekül produziert werden und über eine optische Lichtleitfaser an das Molekül im Resonator gekoppelt werden. Dieses Experiment markiert einen wichtigen Meilenstein auf dem Weg zu zukünftigen Quantennetzwerken.

Während der vergangenen Jahrzehnte wurden verschiedene Materialplattformen, wie neutrale Atome und Ionen in der Gasphase oder Quantenpunkte und Farbzentren im Festkörper untersucht, um sie in der Quanteninformationsverarbeitung zu verwenden. Bis jetzt weisen jedoch alle Systeme Defizite auf. Atome und Ionen im Ultrahoch-Vakuum zeigen hervorragende spektrale Eigenschaften, es ist jedoch sehr schwierig, diese effizient an eine optische Mode zu koppeln und daraus größere Netzwerke zu bauen. Festkörperemitter können andererseits relativ einfach in photonische Strukturen integriert werden, ihre spektrale Qualität ist jedoch aufgrund der Kopplung an ihre Umgebung nur mäßig. Trotzdem kann man sicher sein, dass neuartige Geräte basierend auf quantenmechanischen Effekten bald fester Bestandteil unserer Gesellschaft sein werden. Ein besonders vielversprechender, aber auch äußerst komplexer Zweig dieser neuen Quantentechnologien beschäftigt sich mit der Informationsverarbeitung – mit tatsächlich abhörsicherer Kommunikation oder radikal neuen Ansätzen zur Lösung rechnerisch schwieriger Probleme. Eine Strategie, die Quanteningenieure verfolgen, besteht darin, einzelne Quantenemitter, wie beispielsweise einzelne Atome, mit einzelnen Photonen zu verbinden. Die Ergebnisse des Teams aus dem Max-Planck-Institut für die Physik des Lichts ebnen den Weg zu solchen Technologien basierend auf organischen Molekülen – in Zukunft möglicherweise auf Plastik-Chips.

Fakten, Hintergründe, Dossiers
  • Moleküle
  • Quantensysteme
  • Photonen
  • Nanofabrikation
  • Mikrospiegel
  • Mikroresonatoren
Mehr über MPI für die Physik des Lichts
  • News

    Enzyme und ihre Bewegungen ohne Marker direkt beobachten

    Biologie und Medizin dürften davon sehr profitieren: Forscher des Max-Planck-Instituts für die Physik des Lichtes in Erlangen haben eine Methode entwickelt, um die Arbeitsweise von Enzymen und anderen Biomolekülen direkt zu beobachten. Damit haben sie unter anderem zum ersten Mal alleine mi ... mehr

    Glasfaser mit Einstein-Effekt

    Einen neuen Mechanismus, Licht durch Glasfasern zu leiten, haben Forscher des Erlanger Max-Planck-Instituts für die Physik des Lichts in photonischen Kristallfasern entdeckt. Photonische Kristallfasern werden der Länge nach von regelmäßig angeordneten hohlen Kanälen durchzogen. Die Erlanger ... mehr

    Ein winziger Schalter für ein paar Lichtteilchen

    Die Jediritter der Star Wars-Saga führen einen unmöglichen Kampf. Das liegt nicht an der Überlegenheit des feindlichen Imperiums, sondern an der Physik. Denn mit Laserschwertern lässt sich nicht kämpfen wie mit metallenen Klingen: Lichtstrahlen spüren sich gegenseitig nicht. Damit ein Licht ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für die Physik des Lichts

    Das Max-Planck-Institut für die Physik des Lichts wurde zum 1. Januar 2009 gegründet. Das Institut baut auf die Max-Planck-Forschungsgruppe "Optik, Information und Photonik" an der Universität Erlangen-Nürnberg auf, die seit 2004 eine lange Tradition der Optik-Forschung in Erlangen intensiv ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Deutsch-japanische Kooperation will Antworten auf fundamentale Fragen der Physik finden

    Mit einer feierlichen Zeremonie in Tokio ging am 8. April eine Forschungskooperation an den Start, die sich fundamentalen Fragen der Physik widmen wird. Die Partner sind das japanische Forschungsinstitut RIKEN, zwei Max-Planck-Institute und die PTB. Die drei Partner finanzieren das auf 5 Ja ... mehr

    Tröpfchen für Tröpfchen kosmische Chemie simulieren

    Zwei Astronomen des Max-Planck-Instituts für Astronomie und der Universität Jena haben eine elegante neue Methode entwickelt, die es erlaubt, die Energie einfacher chemischer Reaktionen unter ähnlichen Bedingungen zu messen wie bei Atomen und Molekülen im frühen Sonnensystem. Die neue Techn ... mehr

    Neuer Stoff für Chemie-Lehrbücher

    Auch altbekanntes ist manchmal noch für eine Überraschung gut. Calciumcarbonat (CaCO3), im Volksmund einfach als Kalk bekannt, ist ein Mineral, das Chemiker schon gründlich untersucht haben. Chemielehrbücher führen es mit fünf verschiedenen Kristallstrukturen, müssen jetzt aber ergänzt werd ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.