Meine Merkliste
my.chemie.de  
Login  

Neue Katalysatorklasse für die Energieumwandlung

08.05.2019

© RUB, Marquard

Michael Meischein vor dem Sputter-System, in dem die Nanopartikel durch simultane Beschichtung aus mehreren Quellen in einer ionischen Flüssigkeit erzeugt werden

„Die theoretischen Möglichkeiten scheinen fast zu gut, um wahr zu sein", sagen Forscher.

Viele der für die Energiewende wichtigen chemischen Reaktionen sind sehr komplex und laufen nur unter großen Energieverlusten ab. Das verhindert bisher die breite Anwendung von Energiewandlungs- und Speichersystemen oder Brennstoffzellen. Forscher der Ruhr-Universität Bochum (RUB) und des Max-Planck-Instituts für Eisenforschung in Düsseldorf berichten nun von einer neuen, prinzipiell universell einsetzbaren Katalysatorklasse. Diese sogenannten Hochentropielegierungen basieren auf der ungewöhnlich gleichmäßigen Vermischung von meistens fünf Elementen. Sie könnten die seit Jahrzehnten unverrückbaren Grenzen herkömmlicher Katalysatoren sprengen. Die Hintergründe der Wirkungsweise sowie die Potenziale für eine systematische Nutzung beschreibt das Forscherteam im Journal ACS Energy Letters.

Materialbibliotheken für die Elektrokatalyseforschung

Die Materialklasse der Hochentropielegierungen zeigt physikalische Eigenschaften, die für viele Anwendungen vielversprechend sind. Bei der Sauerstoffreduktion erreichten sie bereits die Aktivität eines Platinkatalysators.

„An unserem Lehrstuhl haben wir einzigartige Methoden, um diese komplexen Materialien aus fünf Ausgangselementen mit unterschiedlichen Zusammensetzungen in Form von Schicht- und Nanopartikelbibliotheken herzustellen“, berichtet Prof. Dr. Alfred Ludwig vom Lehrstuhl für Werkstoffe der Mikrotechnik der RUB. Die Atome der Ausgangselemente vermischen sich im Plasma und bilden in einem Substrat aus ionischer Flüssigkeit Nanopartikel. Je näher an einer der fünf Atomquellen sich ein Partikel bildet, desto höher ist der Anteil dieses Elements im Partikel. „In der Elektrokatalyse ist der Einsatz dieser Materialien bisher nahezu unerforscht“, so Ludwig.

Einzelne Reaktionsschritte beeinflussen

Das soll sich nun ändern. Die Forscher haben die einzigartigen Wechselwirkungen der verschiedenen benachbarten Elemente postuliert, die es ermöglichen, Edelmetalle gleichwertig ersetzen zu können. „Unsere neuesten Forschungen zeigen noch weitere Besonderheiten, zum Beispiel dass diese Klasse möglicherweise auch die Abhängigkeit der einzelnen Reaktionsschritte untereinander beeinflussen kann“, sagt Tobias Löffler, Doktorand am Zentrum für Elektrochemie am Lehrstuhl für Analytische Chemie der RUB. „Damit würde sie zur Lösung eines großen Problems der Energieumwandlung beitragen: der großen Energieverluste. Die theoretischen Möglichkeiten scheinen fast zu gut, um wahr zu sein.“

Grundlage für weitere Forschung

Um schnell weitere Fortschritte in der Forschung zu erzielen, hat das Bochumer und Düsseldorfer Team seine ersten Erkenntnisse zur Deutung seiner Beobachtungen beschrieben, Herausforderungen erläutert und erste Richtlinien vorgeschlagen, die einen erfolgreichen Forschungsfortschritt versprechen. „Die Komplexität der Legierung spiegelt sich in den Forschungsergebnissen wieder, und es sind noch einige Untersuchungen notwendig, bevor das tatsächliche Potenzial abgeschätzt werden kann. Jedoch gibt es bisher keine Erkenntnisse, die einem Durchbruch generell im Wege stehen“, schätzt Prof. Dr. Wolfgang Schuhmann, Inhaber des Lehrstuhls Analytische Chemie der RUB.

Visualisierung in 3D

Der Erforschung dient zudem die Charakterisierung der Katalysatornanopartikel. „Um Hinweise über die Wirkung der exakten Struktur auf die Aktivität zu erlangen, ist eine hochauflösende Visualisierung der Katalysatoroberfläche auf atomarer Ebene hilfreich, am besten in 3D“, sagt Prof. Dr. Christina Scheu vom Max-Planck-Institut für Eisenforschung in Düsseldorf. Dass dieses Ziel erreichbar ist, haben Forscher bereits gezeigt, wenn auch noch nicht für diese Katalysatorklasse.

Ob mit solchen Katalysatoren tatsächlich der Wandel zu einer nachhaltigen Energiewirtschaft gelingen kann, ist noch nicht klar. „Mit unserer Arbeit wollen wir die Grundlagen für Forschungen in diesem Themengebiet schaffen“, so die Autoren.

Fakten, Hintergründe, Dossiers
Mehr über Ruhr-Universität Bochum
  • News

    Wie sich Säuren im ultrakalten interstellaren Raum verhalten

    Säuren neigen dazu, ein Proton abzugeben. Unter Weltallbedingungen zeigen sie allerdings ein komplexeres Verhalten. Wie Säuren bei extrem tiefen Temperaturen mit Wassermolekülen interagieren, haben Bochumer Forscher vom Exzellenzcluster Ruhr Explores Solvation (Resolv) gemeinsam mit Koopera ... mehr

    Rätseln für die Unternehmensgründung

    Im Universitätsforum Ost der Ruhr-Universität Bochum (RUB) eröffnet am 18. Juni 2019 ein neues Lern- und Forschungslabor: der Think Space. In diesem Raum können sich Studierende spielerisch dem Thema Unternehmensgründung annähern und erfahren dabei, mit welchen Unsicherheiten Gründer zu tun ... mehr

    Edelmetall-Katalysatoren sparsam auftragen

    Edelmetall-Nanopartikel aus Platin oder Gold sind hervorragende Katalysatoren. Aber sie sind teuer und selten. Mit dieser neuen Methode könnte Material gespart werden. Eine neue Methode, um seltene und teure Katalysatoren möglichst sparsam verwenden zu können, haben Forscher der Ruhr-Univer ... mehr

  • Universitäten

    Ruhr-Universität Bochum (RUB)

    Mitten in der dynamischen, gastfreundlichen Metropolregion Ruhrgebiet im Herzen Europas gelegen, ist die Ruhr-Universität mit ihren 20 Fakultäten Heimat von 5.000 Beschäftigten und über 33.000 Studierenden aus 130 Ländern. Alle großen wissenschaftlichen Disziplinen sind auf einem kompakten ... mehr

  • q&more Artikel

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Prof. Dr. Klaus Gerwert

    Jg. 1956, studierte Physik in Münster und promovierte 1985 in biophysikalischer Chemie in Freiburg. Nach Stationen am Max-Planck-Institut für Molekulare Physiologie in Dortmund und am Scripps Research Institute in La Jolla, USA erhielt er 1993 einen Ruf auf die C4-Professur für Biophysik ... mehr

Mehr über MPI für Eisenforschung
  • News

    Sauerstoff: Fluch und Segen für nanokristalline Legierungen

    Plastische Verformung und Pulververarbeitungstechniken werden gebraucht, um kostengünstig nanostrukturierte Materialien mit maßgeschneiderter Zusammensetzung herzustellen. Diese Verfahren ermöglichen zudem Metalle zu kombinieren, die sich mit herkömmlichen Verfahren nicht mischen lassen. Da ... mehr

    Atomare Einblicke in die Elektrokatalyse

    Elektrokatalysatoren sind für viele industrielle Prozesse wichtig, da sie die Umwandlung von elektrischer Energie in chemische Energie fördern und so dazu beitragen, überschüssige elektrische Energie aus erneuerbaren Energiequellen zu speichern. Wasserstoff wird für die Speicherung von chem ... mehr

    Atomares Design mit Wasser

    Ein zentrales Element bei so verschiedenen technologischen Fragestellungen wie dem Korrosionsschutz, Batteriematerialien, oder der Herstellung von Wasserstoff mittels Elektrolyse oder Brennstoffzellen ist die Kontaktstelle zwischen leitfähigen Elementen - dem Elektrolyt und der festen Elekt ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Eisenforschung

    Am Max-Planck-Institut für Eisenforschung GmbH (MPIE) wird Forschung auf dem Gebiet von Eisen, Stahl und verwandten Werkstoffen wie Nickel, Titan und intermetallische Phasenlegierungen betrieben. Ein wesentliches Ziel der Untersuchungen ist ein verbessertes Verständnis der komplexen physika ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.