Meine Merkliste
my.chemie.de  
Login  

Neues Messinstrument: Kohlenstoffdioxid als Geothermometer

Forscher quantifizieren mithilfe der Laserspektroskopie seltene CO2-Varianten

22.05.2019

I. Prokhorov

Temperaturabhängige Änderung der CO2-Isotopologenverteilung: Bei niedrigen Temperaturen tritt deutlich häufiger ein Molekül mit seltenen Isotopen auf. Das Foto zeigt den Austritt von CO2 aus einem hydrothermalen System, dem Geysir Andernach.

Mit einem neuartigen Laserinstrument ist es erstmals möglich, vier seltene Molekülvarianten des Kohlendioxids (CO2) gleichzeitig und mit höchster Genauigkeit zu messen. Auf diese Weise kann die Temperatur bei der Bildung von CO2-bindenden Karbonaten und karbonatischen Fossilien völlig unabhängig von anderen Parametern bestimmt werden. Als eine neue Art von Geothermometer ist das auf Laserspektroskopie basierende Messinstrument von Bedeutung für Wissenschaftsdisziplinen, die sich zum Beispiel mit klimatischen Verhältnissen in der erdgeschichtlichen Vergangenheit beschäftigen. Entwickelt wurde es von einem deutsch-französischen Forscherteam. Maßgeblich daran beteiligt waren Umweltphysiker der Universität Heidelberg.

Die Wissenschaft untersucht die Verteilung der atomaren Bausteine von Kohlendioxid, um wichtige geochemische und biogeochemische Zyklen sowie klimatische Prozesse auf unserem Planeten zu ergründen. Das Wissen über Eis- und Warmzeitphasen der Erdgeschichte beruht zu einem wesentlichen Teil auf dieser Methodik. Genutzt wird die Analyse der isotopischen Verteilung des Kohlenstoffdioxids auch für Karbonate, in denen CO2 mineralisiert wird. Ein neuartiger Ansatz beschäftigt sich mit der Isotopenverteilung zwischen verschiedenen Varianten desselben Moleküls, insbesondere seltenen Molekülvarianten.

Erst seit wenigen Jahren ist es möglich, die atomare Zusammensetzung von CO2 und Karbonat mittels hochpräziser Massenspektrometrie zu bestimmen – und zwar so, dass aus der relativen Häufigkeit, mit der mehrere Varianten eines Moleküls auftreten, direkt auf die Bildungstemperatur des Karbonats geschlossen werden kann. Im thermodynamischen Gleichgewicht hängt die Verteilung der Isotope zwischen den verschiedenen Varianten nur von der Temperatur ab und wird nicht von anderen Parametern beeinflusst. „Damit hat sich diese Bestimmungsmethode als ein besonders robustes und einzigartiges physikalisches Thermometer in der Geophysik und der Klimaforschung erwiesen“, sagt Dr. Tobias Kluge, der am Institut für Umweltphysik der Universität Heidelberg zur Physik der Isotopologen forscht.

Um die seltenen CO2-Varianten mit höchster Genauigkeit – genauer als 1 in 20.000 – zu quantifizieren, nutzt das deutsch-französische Team nun erstmals Infrarotlaser, was nach den Worten von Dr. Kluge einen grundlegenden technischen Durchbruch darstellt. Im Rahmen einer Pilotstudie mit verschiedenen hydrothermalen Systemen des Oberrheingrabens ist es den Wissenschaftlern gelungen, anhand von CO2 mit ihrem neuen Laserinstrument Temperaturen zu bestimmen, die im Allgemeinen denen des lokalen Grundwassers entsprachen. „Die Temperaturmessungen stimmten dabei auch mit den Ergebnissen der gleichzeitig durchgeführten massenspektrometrischen Analysen überein“, erklärt Ivan Prokhorov, der Erstautor der Studie, der an der Heidelberger Graduiertenschule für Fundamentale Physik der Ruperto promoviert wurde und nun an der Physikalisch-Technischen Bundesanstalt in Braunschweig tätig ist.

Nach Angaben von Dr. Christof Janssen vom Centre National de la Recherche Scientifique (CNRS) in Paris könnte die Weiterentwicklung der Technik schnell die Genauigkeit der Massenspektrometrie überschreiten und zusätzlich eine drastische Verkürzung der Messzeiten ermöglichen. Damit sollen künftig auch Feldmessungen möglich sein. Ein besonderer Vorteil des Laserinstruments ist sein direkter Zugriff auf die Messvariable Temperatur, wie Dr. Kluge erläutert. Allein durch den Vergleich, wie häufig die untersuchten Molekülvarianten auftreten, lässt sich die Temperatur von CO2 unzweideutig bestimmen, während bei der Massenspektrometrie immer Kalibrationen und regelmäßig Standardmessungen erforderlich sind. „Wir blicken bereits in die Zukunft und arbeiten daran, die Möglichkeiten zur Messung von noch selteneren und bislang unerreichbaren Isotopenvarianten umzusetzen. Damit lassen sich dann auch noch komplexere biogeochemische Prozesse quantitativ auswerten“, sagt der Heidelberger Wissenschaftler.

Fakten, Hintergründe, Dossiers
  • Geochemie
  • Carbonate
Mehr über Ruprecht-Karls-Universität Heidelberg
  • News

    Materialdesign in 3D: vom Molekül bis zur Makrostruktur

    Mit additiven Verfahren wie dem 3D-Druck lässt sich inzwischen nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsam ... mehr

    Was könnte künstliche Photosynthese beitragen, um die globale Erwärmung zu begrenzen?

    Wenn die CO2-Emissionen nicht rasch genug sinken, muss künftig CO2 aus der Atmosphäre entfernt werden, um die globale Erwärmung zu begrenzen. Nicht nur Aufforstung oder Biomasse, sondern auch neue Technologien für künstliche Photosynthese könnten dazu beitragen. Ein HZB-Physiker und eine Fo ... mehr

    Langsam, aber effizient

    In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen. In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Fors ... mehr

  • Videos

    Campus-TV: Was wiegt ein Neutrino?

    Die Masse des Elementarteilchens Neutrino zu bestimmen, gehört zu den Hauptzielen einer neuen Forschergruppe, die mit Förderung der Deutschen Forschungsgemeinschaft (DFG) an der Universität Heidelberg eingerichtet wird. Für die Forschungsarbeiten, die im April 2015 begonnen haben, stellt di ... mehr

    Campus-TV: Liefert Kernfusion die Energie der Zukunft?

    Seit mehr als fünfzig Jahren wird daran geforscht, die Energie der Sonne auch auf der Erde sinnvoll zu nutzen. Am neuen Forschungskraftwerk Wendelstein 7X wurde bereits ein dafür nötiges Plasma erzeugt. mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.