14.06.2019 - Max-Planck-Institut für Kernphysik

Laserblitze für polarisierte Elektronen- und Positronenstrahlen

Simulationsrechnungen zeigen neue Verfahren zur effizienten Polarisation: Physiker des Max-Planck-Instituts für Kernphysik in Heidelberg haben neuartige Methoden zur Erzeugung relativistischer spinpolarisierter Elektronen- und Positronenstrahlen vorgestellt. Anhand von Simulationsrechnungen fanden sie drei verschiedene Szenarien für effizienten Polarisationstransfer von intensiven Laserstrahlen auf Teilchenstrahlen mit einem Polarisationsgrad von bis zu 70%. Eine Schlüsselrolle spielt hier die spinabhängige Strahlungsrückwirkung.

Die Polarisation von Wellen beschreibt deren Schwingungsrichtung, für Licht als elektromagnetische Welle ist dies die Richtung des elektrischen Feldvektors. Bei Teilchenstrahlen spricht man von Polarisation, wenn die Teilchen einen inneren Drehimpuls, den sog. Spin besitzen, den man sich als mikroskopische Kreisel vorstellen kann. Die Polarisation beschreibt hier die Richtung der Drehachse. Die Wechselwirkung von Licht und Teilchen ist in vielen Fällen von der jeweiligen Polarisation abhängig. Aus der Chemie z. B. kennt man die Drehung der Polarisationsebene von Licht, das eine Zuckerlösung durchläuft; in der Kernphysik erweisen sich die Kräfte zwischen den Nukleonen in einem Atomkern als von deren Spin abhängig. Daher sind für Experimente intensive polarisierte Strahlen von hohem Interesse.

Für geladene Teilchen mit Spin, z. B. Elektronen, ist es aber sehr schwierig, die gewünschte Spinausrichtung zu präparieren. Zwar verhalten sich diese wie kleine Magnetnadeln und könnten mit Magnetfeldern hinsichtlich ihres Spins getrennt werden. Zugleich wirkt aber die sog. Lorentzkraft, welche an der Bewegung der Elektronen angreift. Um beide Einflüsse gleichzeitig zu kontrollieren, müssen Ort und Geschwindigkeit sehr genau bekannt sein – und dem steht fundamental die Unschärferelation der Quantenphysik entgegen. Es wurden verschiedene Verfahren entwickelt, dieses Problem zu umgehen, indem z. B. schon bei der Erzeugung von Elektronenstrahlen eine Spinrichtung bevorzugt wird, oder indem relativistische Effekte in Speicherringen ausgenutzt werden. Diese sind aber nicht besonders effizient hinsichtlich des erreichbaren Polarisationsgrads oder der Ausbeute an polarisierten Teilchen.

Physiker der Theorieabteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik und der Xi’an-Jiaotong-Universtät (China) um Jianxing Li haben nun eine neue Methode vorgeschlagen, mit der sich relativistische, unpolarisierte Elektronenstrahlen durch Beschuss mit intensiven polarisierten Laserpulsen in Teilstrahlen mit entgegengesetztem Spin trennen lassen [1]. Hierzu haben sie Monte-Carlo-Simulationsrechnungen durchgeführt, in welchem ein Paket relativistischer Elektronen einem polarisierten hochintensiven Laserblitz entgegenläuft. Es zeigt sich, dass für leicht elliptisch polarisiertes Licht der Elektronenstrahl in Richtung des kleinen Durchmessers der Polarisationsellipse (siehe Abb. 1) in zwei Komponenten mit jeweils entgegengesetztem Spin ±S (blau/rot) aufspaltet.

Zugrunde liegt dabei die so genannte Strahlungsrückwirkung. Die Elektronen werden im Laserfeld von dessen elektrischer und magnetischer Kraft hin- und hergetrieben und diese Bewegung führt wiederum zur Abstrahlung von Lichtquanten, die zudem von der Spinrichtung abhängt. Hierbei erfährt das Elektron einen kleinen Rückstoß, was seine Bewegungsrichtung ändert. Für rein lineare (a) oder zirkulare Polarisation (b) des Lasers geschieht dies aber in gleicher Weise für alle möglichen Richtungen, welche die oszillierenden Felder annehmen können, so dass am Ende Elektronen einer bestimmten Spinrichtung eine Ablenkung sowohl nach links wie nach rechts erfahren. Für leicht elliptische Polarisation ist aber diese Symmetrie aufgehoben und ergibt den gewünschten Effekt der Spintrennung. In den Rechnungen ergab sich ein Polarisationsgrad von bis zu 70%.

In einer weiteren Studie haben die Heidelberger Physiker ein Verfahren zur Herstellung polarisierter Positronen (Antiteilchen des Elektrons) untersucht [2]. Hierbei wird den relativistischen Elektronen ein asymmetrisch linear polarisierter Laserpuls entgegen geschossen, dessen Feld in einer Richtung deutlich stärker ist. Dies lässt sich durch Überlagerung zweier Laserpulse verschiedener Farbe erreichen. Durch Wechselwirkung der energiereichen Elektronen mit dem hochintensiven Laserfeld werden Elektron-Positron-Paare erzeugt, die in Richtung bzw. entgegen der magnetischen Komponente des Lasers polarisiert sind. Diese Paarerzeugung ist ein nichtlinearer Prozess, der bei schwächeren Feldern stark unterdrückt wird. Daher bewirkt die Asymmetrie des Laserpulses eine deutliche Polarisation der erzeugten Positronen von bis zu 60%. Dies genügt den Anforderungen für verschiedene Anwendungen in der Hochenergiephysik.

Schließlich wurde in einer dritten Arbeit der Heidelberger Theoriegruppe die Erzeugung hochintensiver polarisierter Elektronenstrahlen betrachtet [3]. Experimentell wurde kürzlich gezeigt, dass mit zirkular polarisierten Laserstrahlen aus Molekülen polarisierte Gastargets sehr hoher Dichte erzeugt werden können. Beschießt man ein solches Target mit einem hochintensiven Laser, so bildet sich ein Plasma worin sich Störungen wellenförmig ausbreiten und quasi in deren „Kielwasser“ Elektronen auf hohe Energien beschleunigt werden („Kielwasser-Beschleunigung“, siehe Abb. 2). Ein Problem sind die dabei auftretenden Magnetfelder, welche die Spinrichtung ändern und so zu einer Depolarisation führen können. Exakt auf der Stahlachse verschwinden diese Magnetfelder. Mittels „Particle-in-Cell“-Simulationen konnten die Heidelberger Theoretiker Bedingungen finden, unter welchen die beschleunigten Elektronen entlang der Strahlachse stark gebündelt werden. So könnten Ströme im Bereich von Kiloampere erzeugt und zugleich die Depolarisation auf ca. 10% begrenzt werden.

  • [1] "Ultrarelativistic Electron-Beam Polarization in Single-Shot Interaction with an Ultraintense Laser Pulse"; Yan-Fei Li, Rashid Shaisultanov, Karen Z. Hatsagortsyan, Feng Wan, Christoph H. Keitel and Jian-Xing Li; Physical Review Letters 122, 154801 (2019).
  • [2] "Polarized positron beams via intense two-color laser pulses"; Yue-Yue Chen, Pei-Lun He, Rashid Shaisultanov, Karen Z. Hatsagortsyan and Christoph H. Keitel; arXiv:1904.04110.
  • [3] "Polarized Laser-WakeField-Accelerated Kiloampere Electron Beams"; Meng Wen, Matteo Tamburini and Christoph H. Keitel; Physical Review Letters 122, 214801 (2019).
Fakten, Hintergründe, Dossiers
  • Polarisation
  • Elektronenstrahlen
  • Positronenstrahlen
  • Spin
  • Elektronen
  • Positronen
Mehr über MPI für Kernphysik
  • News

    Eine Ameise auf einem Elefanten wiegen: Quantensprung auf der Waage

    Ein neuer Zugang zur Quantenwelt: Wenn ein Atom beim Quantensprung eines Elektrons Energie aufnimmt oder abgibt, wird es schwerer oder leichter. Ursache ist Einsteins E = mc². Allerdings ist dieser Effekt bei einem einzelnen Atom ultraklein. Trotzdem gelang es nun einer internationalen Koop ... mehr

    Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen

    Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt. Dazu isolierten sie ein einzelnes Ar¹³⁺-Ion aus einem extrem heißen P ... mehr

    Verzerrte Atome

    Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Io ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Kernphysik

    Das Max-Planck-Institut für Kernphysik (MPIK), eines von 80 Instituten und Forschungseinrichtungen der Max-Planck-Gesellschaft, betreibt Forschung auf folgenden Gebieten: Die Astroteilchenphysik vereint Fragestellungen des Makro- und Mikrokosmos: Ungewöhnliche Beobachtungsmethoden für Gamma ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Malen mit Kristallen

    Halbleiter aus organischen Materialien, z.B. für Leuchtdioden (OLEDs) und Solarzellen, könnten in Zukunft siliziumbasierte Elektronik ersetzen oder ergänzen. Die Effizienz solcher Bauelemente hängt entscheidend von der Qualität der dünnen Halbleiter-Schichten ab. Diese werden durch Beschich ... mehr

    Corona-Folgen für das Erdsystem

    COVID-19 wirkt sich unmittelbar auf die Gesundheit, die Wirtschaft und das soziale Wohlergehen in unserem persönlichen Leben aus. Doch die Folgen für das gesamte Erdsystem, insbesondere solche, die sich aus den weltweit verhängten Kontaktbeschränkungen ergeben, könnten sehr viel weitreichen ... mehr

    Tintenfisch inspiriertes Material heilt sekundenschnell

    Ein weiches Material, das sich augenblicklich selbst heilt, ist keine Fiktion mehr, sondern Realität. Ein Team von Wissenschaftlern am Max-Planck-Institut für Intelligente Systeme und der Pennsylvania State University verändert die Nanostruktur eines neuen dehnbaren Materials so lange, bis ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr