Meine Merkliste
my.chemie.de  
Login  

Origin of Life: Zwischen Luft und Wasser

02.08.2019

Kleine Gasblasen in porösem Gestein rund um heiße Quellen haben für die Entstehung des Lebens vermutlich eine wichtige Rolle gespielt. Temperaturunterschiede an der Oberfläche von Flüssigkeiten könnten für den Start einer chemischen Evolution gesorgt haben.

Bevor Leben auf der frühen Erde entstehen konnte, muss schon viel passiert gewesen sein. Der biologischen muss eine chemische Evolution vorausgegangen sein, in der sich die ersten informationstragenden Moleküle, die sich selbst vervielfältigen konnten, geformt haben. Doch unter welchen präbiotischen Bedingungen war dies möglich? Dass poröses Vulkangestein rund um heiße Quellen ein solches Setting gebildet hat, ist schon länger in der Diskussion. Jetzt hat ein internationales Forscherteam um Dieter Braun, Professor für Systems Biophysics an der LMU, einen grundlegenden Mechanismus untersucht, der bei der Entstehung des Lebens mutmaßlich eine wichtige Rolle gespielt hat. Er hat sich diesmal auf die Effekte an Grenzflächen zwischen Wasser und Luft konzentriert. Die Frage war, welche chemischen Reaktionen dort in Gang kommen konnten, die die ersten Schritte der Evolution triggerten.

Eine entscheidende Rolle bei der Entstehung des Lebens haben danach kleine Gasblasen gespielt, die sich in dem porösen Gestein festsetzten und mit diesem interagierten. Was dabei geschah, haben die Wissenschaftler in Experimenten nachvollzogen: Ist eine Seite der Gasbläschen wärmer als die andere, kommt es an der wärmeren Seite zur Verdunstung von Wasser, welches dann auf der kälteren Seite kondensiert und wie Regentropfen an einer Fensterscheibe nach unten und wieder aus der Blase herausläuft. „Dieser Prozess kann im Prinzip unendlich oft wiederholt werden, da das Wasser kontinuierlich verdunstet und kondensiert“, sagt Dieter Braun, der den Mechanismus und die zugrunde liegenden Prozesse mit seinem Doktoranden Matthias Morasch und weiteren Mitgliedern seiner Gruppe eingehend untersucht hat. Die Folge dieses Prozesses: Moleküle werden auf der warmen Seite auf sehr hohe Konzentration gebracht.

„Wir haben zunächst verschiedene Messungen gemacht, um den Mechanismus genauer zu ergründen“, erklärt Morasch. „Er stellte sich als überraschend effektiv und robust heraus, selbst kleine Moleküle wurden damit stark aufkonzentriert. Wir haben dann eine ganze Reihe physikalischer und chemischer Prozesse ausprobiert, die bei der Entstehung des Lebens eine zentrale Rolle gespielt haben müssen. Sie wurden alle von den Bedingungen an der Gasblase deutlich beschleunigt und teilweise sogar erst möglich gemacht.“ Bei diesen Experimenten kam den Münchner Biophysikern auch die enge Zusammenarbeit mit Forschern anderer Fachrichtungen, Chemikern und Geologen etwa, zugute, mit denen sie in einem von der DFG finanzierten und von Braun koordinierten Sonderforschungsbereich (SFB/TRR) zur „Entstehung des Lebens“ oder in internationalen Zusammenschlüssen kooperieren.

Die Forscher zeigen zum Beispiel, dass Prozesse, die für die Entstehung von Polymeren wichtig sind, an der Grenzfläche von Wasser und Gasblase deutlich besser funktionieren oder überhaupt erst stattfinden können. Der Mechanismus verbessert chemische und katalytische Reaktionen. So wurden in den Experimenten Moleküle bei hohen Konzentrationen sogar in Lipide verpackt, wenn die Wissenschaftler entsprechende Bausteine zugaben. „Dabei entstanden zwar keine perfekten Vesikel. Aber der Befund kann schon einen Hinweis darauf geben, wie erste rudimentäre Protozellen und ihre äußeren Membranen entstanden sein könnten“, sagt Morasch.

Damit derartige Prozesse in den Blasen ablaufen, „ist nicht entscheidend, aus welchem Gas die Blase besteht. Wichtig ist nur, dass das Wasser durch den Temperaturunterschied an einer Stelle verdunstet und an einer anderen wieder kondensiert“, erklärt Braun. Seine Gruppe hatte bereits in der Vergangenheit mit einem anderen Mechanismus gezeigt, dass Temperaturunterschiede in Wasser zu hohen Konzentrationen von Molekülen führen. „Die beiden Effekte lassen sich in unserem Erklärungsmodell gut kombinieren und würden die Konzentration und damit die Effektivität für präbiotische Prozesse noch verstärken“, sagt der Biophysiker.

Originalveröffentlichung:

Matthias Morasch, Jonathan Liu, Christina F. Dirscherl, Alan Ianeselli, Alexandra Kuhnlein, Kristian Le Vay, Philipp Schwintek, Saidul Islam, Merina K. Corpinot, et al.: "Heated gas bubbles enrich, crystallize, dry, phosphorylate, and encapsulate prebiotic molecules"; Nature Chemistry 2019

Fakten, Hintergründe, Dossiers
Mehr über LMU
  • News

    Ultraschneller Blick in die Photochemie der Atmosphäre

    Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf den Einfluss von Strahlung. Einen dieser Prozesse hat das Team um Professor Matthias Kling und Dr. Boris Bergues vom Labor für Attos ... mehr

    Molekulare Motoren: Rotation auf der Achterbahn

    Molekulare Motoren wandeln extern zugeführte Energie in gezielte Drehbewegungen um und sind damit eine wichtige Grundlage für zukünftige Anwendungen in der Nanotechnologie. Die ersten derartigen Motoren wurden in den späten 1990er-Jahren entwickelt, seither hat sich eine wachsende Zahl unte ... mehr

    Teilchenbeschleunigung im Taschenformat

    Münchner Physiker haben ein Miniaturmodell für die sogenannte Plasma-Wakefield-Beschleunigung etabliert und schaffen damit eine breitere Basis, um eine neue Generation von Beschleunigern zu entwickeln. Wer verstehen möchte, wie unsere Welt auf ganz elementarer Ebene funktioniert, sollte ein ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.