03.07.2020 - Ruhr-Universität Bochum (RUB)

Algen als lebende Biokatalysatoren für eine grüne Industrie

Entdeckung könnte für mehr Umweltschutz in der chemischen Industrie sorgen

Viele Substanzen, die wir täglich nutzen, wirken nur in der richtigen 3D-Struktur. Natürliche Enzyme könnten sie umweltfreundlich herstellen – wenn sie nicht einen bisher nur teuer zu erzeugenden Hilfsstoff bräuchten. Ein Forschungsteam der Ruhr-Universität Bochum (RUB) hat in einzelligen Grünalgen genau die gewünschten Enzyme entdeckt. Und noch besser: Da lebende Algen als Biokatalysatoren für bestimmte Substanzen infrage kommen, bringen sie den Hilfsstoff gleich mit und stellen ihn umweltfreundlich durch Fotosynthese her.

Auf die 3D-Struktur kommt es an

Viele chemische Substanzen in Kosmetika, Lebensmitteln oder Medikamenten können leicht unterschiedliche dreidimensionale Strukturen einnehmen, wobei nur jeweils eine davon den gewünschten Duft oder die gewünschte medizinische Wirkung zeigt. Die chemische Herstellung der richtigen Substanzen ist oft nicht gerade umweltverträglich, da hohe Temperaturen oder spezielle Lösungsmittel notwendig sind. In der Natur gibt es dagegen bestimmte Proteine, die das gewünschte Produkt bei milden Temperaturen und in Wasser herstellen. Dabei erzeugen sie oft genau die 3D-Struktur der Substanz, die von der Industrie gebraucht wird.

Old Yellow Enzymes brauchen ein teures Hilfsmittel

Diese sogenannten Old Yellow Enzymes, kurz OYEs, verdanken ihren Namen ihrer von Natur aus gelben Farbe. Sie kommen in Bakterien, Pilzen und Pflanzen vor, sind teils gut untersucht und vielversprechend für eine biobasierte Wirtschaft. Sie haben jedoch einen Nachteil: Um ihre Reaktion ausführen zu können, brauchen sie das Hilfsmittel NADPH (Nicotinamid-Adenindinukleotid-Phosphat). In lebenden Zellen wird dieses kleine Molekül durch den Stoffwechsel bereitgestellt. Es chemisch herzustellen ist dagegen sehr teuer, was die ökonomische Nutzung der OYEs ausbremst.

OYEs aus einzelligen Grünalgen: zwei Fliegen mit einer Klappe?

Das Bochumer Forschungsteam hat mehrere OYEs in einzelligen Grünalgen entdeckt. „Für eine breite Anwendung braucht die Industrie OYEs, die auch ungewöhnliche Moleküle herstellen können“, erklärt Prof. Dr. Thomas Happe, Leiter der Arbeitsgruppe Photobiotechnologie an der RUB. „Algen besitzen sehr komplexe Stoffwechselwege und sind daher ideale Quellen für neuartige Biokatalysatoren.“ Die Forscher untersuchten Algen-OYEs im Reagenzglas und konnten zeigen, dass sie viele kommerziell interessante Substanzen umsetzen können. „Besonders spannend ist es, dass auch lebende Algen die gewünschten Reaktionen durchführen können“, berichtet die Doktorandin Stefanie Böhmer, Erstautorin der Studie. „Algen stellen NADPH mithilfe der Fotosynthese, also mit Sonnenlicht her, sodass das Hilfsmittel der OYEs umweltfreundlich und kostengünstig bereitgestellt wird.“

Vielversprechende Zusammenarbeit

Die Studie zeige, wie wichtig die Zusammenarbeit von Forschern verschiedener Fachgebiete ist, und dass Kontakte zur Wirtschaft auch wertvolle Grundlagenforschung initiieren, betonen die Autoren. Mitgewirkt haben vier Wissenschaftler aus dem von der Deutschen Forschungsgemeinschaft geförderten Graduiertenkolleg „Micon – Mikrobielle Substratumsetzung“, die jeweils ihre eigene Expertise einbrachten. Das Konzept der Arbeiten entstammt dem Spin-off Solarbioproducts Ruhr, das von der Wirtschaftsförderungsgesellschaft Herne und Thomas Happe gegründet wurde, um Konzepte für umweltfreundliche Algenbiotechnologien zu entwickeln. „Wir haben einen großen Schritt in Richtung grüne Industrie gemacht“, freut sich Happe. „Ohne die Kooperationen wäre dies nicht möglich gewesen.“

Fakten, Hintergründe, Dossiers
  • Grünalgen
  • Enzyme
  • Biokatalysatoren
  • Photosynthese
  • Algenbiotechnologie
Mehr über Ruhr-Universität Bochum
  • News

    Programmierbare synthetische Materialien

    In der DNA ist die Information in der Abfolge chemischer Bausteine gespeichert, in Computern bestehen Information aus Sequenzen von Nullen und Einsen. Dieses Konzept wollen Forscher auf künstliche Moleküle übertragen. Künstliche Moleküle könnten eines Tages die Informationseinheit einer neu ... mehr

    Einblicke in die Struktur eines rätselhaften Katalysators

    Der Katalysator für die Produktion von Methanol hatte sich in der Vergangenheit allen Versuchen, seine Struktur aufzuklären, entzogen. Jetzt wissen Forscher mehr über sein aktives Zentrum. Methanol ist eine der wichtigsten Basischemikalien, etwa um Kunststoffe oder Baumaterialien herzustell ... mehr

    Wasser ist Gold wert für die Nanokatalyse

    Winzige Goldpartikel, die auf Metalloxide aufgebracht werden, könnten als Nanokatalysatoren für die chemische Industrie dienen – zum Beispiel für die Umwandlung von Alkoholen mittels Oxidation in wertvolle Chemikalien. Die Gold-Metalloxid-Verbindungen zeigen eine hohe katalytische Aktivität ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr