15.07.2020 - Forschungszentrum Jülich GmbH

Ionische Flüssigkeit sprengt Holzfasern in wenigen Minuten

Prozess könnte Holz als Ersatz für fossile Rohstoffe besser nutzbar machen

Aus Holz lassen sich hochwertige Biopolymere gewinnen, die fossile Rohstoffe als Ausgangsmaterial für eine Vielzahl von Produkten ersetzen könnten. Dazu sind jedoch mildere Verfahren nötig als etwa bei der Zellstoffgewinnung zur Papierherstellung. Sogenannte ionische Flüssigkeiten eignen sich, um in einem schonenden ersten Behandlungsschritt Holz aufzuschließen und seine Bestandteile zugänglich zu machen für eine weitere Verarbeitung. Dies gelingt bereits im Labormaßstab, doch die Flüssigsalze sind teuer, wodurch sich eine industrielle Nutzung derzeit nicht rentiert. Neue Erkenntnisse von Wissenschaftlerinnen und Wissenschaftlern des Forschungszentrums Jülich und der RWTH Aachen sollen dabei helfen, den nachhaltigen Prozess zu optimieren und günstiger zu machen. Die Forscher zeigen nun in einem Zeitrafferfilm, wie eine ionische Flüssigkeit Holzfasern innerhalb weniger Minuten aufsprengt. Zusätzlich klärten sie mithilfe von Neutronenstreuung, was dabei auf Nanometer-Ebene abläuft und wo sich der Prozess verbessern lässt.

Holz ist ein wertvoller Rohstoff und sein Nutzen geht weiter über die Herstellung von Möbeln oder Papier hinaus. In dem Pflanzenmaterial finden sich zwei der weltweit häufigsten organischen Verbindungen: Zellulose und Lignin. Die Biomoleküle besitzen großes Potenzial als nachhaltige Alternative zu fossilen Rohstoffen. Denn aus Zellulose und Lignin lassen sich zahlreiche Grundchemikalien herstellen, wie Zucker oder aromatische Verbindungen. Daraus wiederum können hochwertige Produkte entstehen, beispielsweise biologisch abbaubare Kunststoffe, leichte und widerstandsfähige Verpackungen, Aromastoffe oder Klebstoffe und Harze, etwa für den Bau von Windturbinen oder Fahrzeugen.


Zellulose und Lignin in geeigneter, hochwertiger Form aus Holz zu isolieren ist jedoch nicht einfach: Die Moleküle liegen in Form langer und teils verzweigter Ketten vor, die miteinander verwoben sind und sich kaum in Wasser und anderen üblichen Lösemitteln lösen. Die energie- und wasserintensiven Kochverfahren, die in der Papierherstellung genutzt werden, um Zellulose zu gewinnen, sind vergleichsweise aggressiv und erzeugen Mischungen, die nicht geeignet sind. Sie enthalten zum Teil zu kleine Polymerbausteine, aber auch Rückstände aus den Kochlaugen und -basen. Wissenschaftler des Jülich Centre for Neutron Science am Forschungszentrum Jülich nahmen deshalb zusammen mit Kollegen an der RWTH Aachen ein nachhaltiges und schonendes Verfahren "unter die Lupe", und dies im wahrsten Sinne des Wortes.

Dabei werden ionische Flüssigkeiten genutzt, Salze, die sich bei Temperaturen unter etwa 100°C verflüssigen und sowohl polare als auch unpolare Eigenschaften besitzen. Die Flüssigkeiten lassen Holz aufquellen und sich teilweise auflösen. Bei einem hauchdünnen Schnipsel Buchenholz und der Flüssigkeit EMIMAc dauert dies nur wenige Minuten, wie die Forscher mit einem Lichtmikroskop zeigten. Zellulosefasern, Ligninmoleküle und Hemizellulose sind dann zugänglich für weitere Verarbeitungsschritte, etwa durch Enzyme.

Ionische Flüssigkeiten sind teuer, können jedoch weitgehend wiederverwendet werden. Durch eine Optimierung etwa der Einweichzeit oder der Temperatur könnte ihr Einsatz günstiger und industriell interessant werden. Um genauer zu verstehen, wie Flüssigkeit und Holz wechselwirken, war eine wesentlich leistungsfähigere Lupe vonnöten als ein Lichtmikroskop, die sogenannte Neutronenstreuung. Dabei kamen Neutronen zum Einsatz, Bausteine der Atomkerne, die am Heinz Maier-Leibnitz Zentrum in Garching zu Forschungszwecken produziert werden. Dort betreibt das Forschungszentrum Jülich an seiner Außenstelle ein Instrument zur Messung von Strukturen im Nanometer-Bereich.

An der Neutronenkleinwinkelstreuapparatur KWS-1 verfolgten die Forscher den Prozess erstmals durchgehend und konnten ihn so in einzelne Stadien aufteilen und räumlich und zeitlich vermessen. Zunächst dringt die ionische Flüssigkeit durch Poren und Kanäle in das trockene Holz ein und benetzt es. Danach beginnt das molekulare Flechtwerk aus Lignin und Zellulose aufzuquellen, was sich an nanometergroßen Löchern im Material zeigt. Schließlich wird es regelrecht aufgesprengt, wodurch die Flüssigkeit weiter vordringen kann. Durch diesen Prozess wird die Zellulose schließlich zugänglich für Enzyme, die sie in leicht lösliche und gut weiterzuverarbeitende, mittelgroße sogenannte "Oligomer"-Moleküle zerlegen können. Zudem können nun auch das Lignin und weitere Stoffe, wie Hemizellulose, separiert werden.

"Die Effizienz des Prozesses erwies sich als bereits gut", berichtet Dr. Henrich Frielinghaus, Instrumentwissenschaftler an der KWS-1. "Aber da wir nun genau wissen, wie lange die einzelnen Stadien dauern, lässt sich der Prozess beschleunigen und dadurch günstiger machen. Auch hinsichtlich der Temperatur zeigte sich noch Optimierungspotenzial." Die Forscher planen als Nächstes genauer zu untersuchen, welche chemischen Veränderungen während des Prozesses ablaufen. Hierzu kombinieren sie Neutronenstreuung mit einer spektroskopischen Methode. Jülicher und Aachener Wissenschaftler erforschen innerhalb der Jülich Aachen Research Alliance – Sektion JARA-SOFT in einem multidisziplinären Ansatz neben Biopolymeren auch weitere Materialien und Phänomene der sogenannten "Weichen Materie".


Mehr über Forschungszentrum Jülich
  • News

    Magnetische Nanoteilchen ändern in einem Magnetfeld ihre magnetische Struktur

    Werden ultrafeine magnetische Partikel einem von außen einwirkenden Magnetfeld ausgesetzt, wächst ihr magnetischer Kern in bisher unerwarteter Weise. Das hat ein Team von Wissenschaftlern der Universität zu Köln, des Forschungszentrums Jülich und des Instituts Laue-Langevin in Grenoble, Fra ... mehr

    Neues Verständnis der Defektbildung an Silizium-Elektroden

    Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internation ... mehr

    Kavli-Preis für Wegbereiter der modernen Elektronenmikroskopie

    Der Kavli-Preis für Nanowissenschaften geht in diesem Jahr an Prof. Knut Urban vom Forschungszentrum Jülich. Der Wissenschaftler, ehemals Direktor des Instituts für Mikrostrukturforschung sowie des Ernst Ruska-Centrums für Mikroskopie und Spektroskopie mit Elektronen (ER-C), erhält die Ausz ... mehr

  • Videos

    Zukunft ist unsere Aufgabe: Das Forschungszentrum Jülich

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung in den Bereichen Energie und Umwelt sowie Information und Gehirn. Es stellt sich drängenden Fragen der Gegenwart und entwickelt Schlüsseltechnologien für morgen. mehr

    Die (R)Evolution der Elektronenmikroskopie - So funktioniert PICO

    Das Elektronenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern. Es ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen und Fortschritte in Bereichen wie der Energieforschung oder den Informationstec ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Erfolgreiche Wissenschaft braucht mehr als gute Forschung. Damit öffentliche Förderprogramme ihre Ziele erreichen, Industriepartner und Forschungseinrichtungen gewinnbringend zusammenarbeiten und Forscher über Fördermöglichkeiten in ihrem Arbeitsfeld gut informiert sind, ist Sachverstand im ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr