19.11.2020 - Max-Planck-Institut für marine Mikrobiologie

Zelluläres Kraftwerk recycelt Industrie-Abgase

Die Idee ist, die Kraft von Bakterien zu nutzen, um schädliche Abgase in wertvolle Verbindungen wie Acetat oder Ethanol zu verwandeln

Kohlenmonoxid ist ein hochgiftiges Gas. Menschen sterben innerhalb weniger Minuten, wenn sie es einatmen. Trotzdem gibt es Bakterien, die Kohlenmonoxid nicht nur widerstehen können, sie verwenden es sogar zum Atmen und zur Vermehrung. Erkenntnisse darüber, wie diese Bakterien überleben, öffnen ein Fenster in die Urzeiten der Erde und zur Entstehung des Lebens. Gleichzeitig könnten sie für die Zukunft sehr nützlich sein, da sie zur Reinigung von Abgasen und zur Herstellung von Biokraftstoffen verwendet werden können. In dem Zusammenhang haben zwei Wissenschaftler des Max-Planck-Instituts für Marine Mikrobiologie in Bremen nun eine überraschende Entdeckung gemacht.

In den Abgasen vieler Industriezweige – zum Beispiel besonders in Stahlhütten – ist jede Menge Kohlenmonoxid und Kohlendioxid enthalten. Momentan werden diese Gase vielerorts noch einfach in die Luft geblasen, doch das kann sich bald ändern. Die Idee ist, die Kraft von Bakterien zu nutzen, um schädliche Abgase in wertvolle Verbindungen wie Acetat oder Ethanol zu verwandeln. Diese können anschließend als Biokraftstoffe oder Grundstoffe für synthetische Materialien verwendet werden. Die ersten Versuchsanlagen werden bereits evaluiert, um diese Umwandlung im industriellen Maßstab zu nutzen. Die Stars dieses Prozesses sind Bakterien wie Clostridium autoethanogenum, die Kohlenmonoxid, Kohlendioxid und Wasserstoff fressen.

„Die wichtigsten Funktionen des Stoffwechsels dieser Bakterien sind weitgehend charakterisiert“, sagt Tristan Wagner, Leiter der Forschungsgruppe Mikrobielle Metabolismen des Max-Planck-Instituts in Bremen. „Aber es gibt immer noch viele Fragezeichen auf molekularer Ebene.“ Und genau diese interessieren die Grundlagenforscher aus Bremen. Aktuell gingen sie der Frage nach: Wie wird das giftige Kohlenmonoxid von Enzymen mit so verblüffender Effizienz verarbeitet?

Kristallisierte Überraschung

Das Wissen auf molekularer Ebene über die Umwandlung von Kohlenmonoxid stammte bisher vorallem aus Studien, die an der Spezies Moorella thermoacetica durchgeführt wurden. Dies ist ein einfacher und gut untersuchter mariner Modellorganismus, der jedoch im Gegensatz zu Clostridium autoethanogenum Abgase nur schlecht entgiften kann. Beide Bakterien verwenden aber das gleiche Enzym zur Umwandlung von Kohlenmonoxid: die CO-Dehydrogenase/Acetyl-CoA-Synthase, abgekürzt CODH/ACS. Es ist ein sehr häufiges Enzym, das bereits in der Urzeit der Erde existierte. „Da beide Spezies dasselbe Enzym zur Umwandlung von Kohlenmonoxid verwenden, erwarteten wir, genau dieselbe Struktur mit eventuell geringfügigen Unterschieden zu sehen“, sagt Wagner.

Für ihre Forschung untersuchten Wagner und sein Kollege Olivier N. Lemaire das Bakterium Clostridium autoethanogenum, um zu verstehen, wie es gedeihen kann, indem es einen Stoffwechsel ähnlich dem der ersten Lebensformen nutzt. Olivier N. Lemaire züchtete die Bakterien und reinigte ihr Enzym CODH/ACS in Abwesenheit von Sauerstoff, da dieser für das Enzym schädlich ist. Die beiden Wissenschaftler verwendeten die Kristallisationsmethode, um Kristalle des Enzyms CODH/ACS zu erhalten und die 3D-Struktur des Proteins mittels Röntgenkristallographie zu bestimmen. „Als wir die Ergebnisse sahen, trauten wir unseren Augen nicht“, sagt Wagner. „Die Schnittstelle im Enzym zwischen CODH und ACS unterscheidet sich bei Clostridium autoethanogenum drastisch vom Modell von Moorella thermoacetica, obwohl es sich um das gleiche Enzym und ähnliche Bakterien handelt.“

Gleiche Zutaten, andere Architektur

Im Folgenden führten die beiden Forscher weitere Experimente durch, um zu beweisen, dass die entdeckte Struktur kein Zufallsprodukt war. Die Ergebnisse bestätigten ihre Entdeckung. Damit widerlegen die Wissenschaftler eindeutig die bisherige Annahme, dass das Enzym CODH/ACS immer die gleiche Gesamtstruktur hat. „Das Enzym von Moorella thermoacetica hat eine lineare Form“, erläutert Olivier N. Lemaire, Erstautor der Studie, die jetzt in der Fachzeitschrift BBA Bioenergetics erschienen ist. „Bei Moorella thermoacetica produziert das Enzym Kohlenmonoxid im CODH und verwendet es im ACS. Zwischen ihnen ist es eingeschlossen und wird durch einen dichten Gaskanal geleitet. Im ACS wird dann Acetyl-CoA synthetisiert, ein Baustein, der zu Acetat und Ethanol weiterverarbeitet wird. Der restliche Teil der Zelle kommt nie mit Kohlenmonoxid in Kontakt.“

Clostridium autoethanogenum nimmt dagegen direkt Kohlenmonoxid auf. „Das Enzym hat in Clostridium autoethanogenum nicht nur eine Öffnung, sondern gleich mehrere. Auf diese Weise kann so viel Kohlenmonoxid wie möglich aufgefangen und in ein ganzes System von Tunneln geleitet werden, die in beide Richtungen verlaufen“, sagt Lemaire. „Diese Ergebnisse zeigen eine Umbildung der internen Gaskanäle während der Evolution dieser Bakterien. Entstanden ist ein Komplex mit Gaskanälen in beide Richtungen, der die ständige Aufnahme von Kohlenmonoxid sowie eine hohe Umwandlung des Gases für die Energieerhaltung gewährleistet. Das Enzym fungiert so als wichtigstes Zellkraftwerk.“ Als Endprodukte entstehen dann auch bei Clostridium autoethanogenum Azetate und Ethanol, die zu Treibstoff weiterverarbeitet werden können.

„Wir haben jetzt eine Vorstellung davon, wie dieses sehr effiziente und robuste Enzym aussieht“, sagt Tristan Wagner. „Aber unsere Entdeckung ist nur ein weiterer Schritt. Unter anderem ist es immer noch eine offene Frage, wie das Bakterium überleben und Kohlenmonoxid nutzen kann, um seinen gesamten zellulären Energiebedarf zu decken. Wir haben einige Hypothesen, stehen aber noch am Anfang. Um den gesamten chemischen Prozess der Umwandlung von Kohlenmonoxid in Acetat und Ethanol zu verstehen, müssen weitere Proteine untersucht werden.“

Fakten, Hintergründe, Dossiers
  • Röntgenkristallografie
Mehr über MPI für Marine Mikrobiologie
  • News

    Alles in einer Zelle: Die Mikrobe, die Öl in Gas umwandelt

    Neue Bilder aus dem Mikroskop deuten darauf hin, dass die kürzlich entdeckten Mikroben Methanoliparia Methan aus Rohöl erzeugen können – und zwar ohne fremde Hilfe. Die winzigen Organismen klammern sich an Öltröpfchen und vollbringen Großes: Ganz allein scheinen sie Öl in Methan umzuwandeln ... mehr

    Die rostfressende Mikrobe

    Schon lange hegten Mikrobiologen den Verdacht, dass es diesen kleinen Gesellen geben muss. Doch gefunden haben sie ihn nicht – bis jetzt: Die Mikrobe, die sowohl Methan als auch Eisen “frisst”. Forscher vom Max-Planck-Institut für Marine Mikrobiologie und der niederländischen Radboud Univer ... mehr

    Vom Rosenduft zu Nylon und den Kunststoffen

    Betörende Düfte, nüchterne Fakten: von Pflanzen ausgehende Düfte sind fast immer Monoterpene und Monoterpenalkohole, die ätherischen Öle der Pflanzen sind natürliche Kohlenwasserstoffverbindungen. So ist Geraniol der verlockend duftende Alkohol der Rosen. Forscher des Max-Planck-Instituts f ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Topologie wird magnetisch: Die neue Vielfalt topologischer magnetischer Materialien

    Die elektronische Struktur unmagnetischer Kristalle lässt sich mit Hilfe vollständiger Theorien der Band-Topologie klassifizieren, was zu einer Art „topologischem Periodensystem“ führt. Eine analoge Klassifikation magnetischer Materialien war bisher jedoch nicht möglich, und daher wurden nu ... mehr

    Metallische Substrate helfen molekularem Quantenschalter

    Die Quantendynamik von Wasserstoff ist für viele Probleme in der Natur von zentraler Bedeutung, da sie stark von ihrer Umgebung beeinflusst wird. In einem gerade veröffentlichten Beitrag im Journal PRL befassen sich Mitglieder der Lise Meitner Gruppe am MPSD mit dem Wasserstofftransfer inne ... mehr

    Photonen in der Dose

    Die Kristallsymmetrie ist einer der entscheidenden physikalischen Faktoren, die die Eigenschaften eines Materials bestimmen. Insbesondere das Verhalten eines Elektrons wird weitgehend von der Symmetrie des Kristalls beeinflusst, die wiederum das grundlegende Verhalten des Materials bestimmt ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr