23.11.2020 - Karl-Franzens-Universität Graz

Molekulare Telegraphie

Präzises Senden und Empfangen einzelner Moleküle

Die Idee, einen Ball zu werfen und zu fangen, ist allen vertraut – aber kann man das auch mit einzelnen Molekülen machen? Also sie gezielt von einem Ort an einen anderen und wieder zurück transferieren? Und wie schnell wären die Moleküle? Diesen Fragen ist eine Forschungsgruppe der Universität Graz in Kooperation mit Wissenschaftlern aus Aachen und Tennessee nachgegangen. Die Ergebnisse sind als Titelgeschichte in der aktuellen Ausgabe des Magazins Science erschienen.

„Durch die gezielte Bewegung einzelner Moleküle können wir Einblick in grundlegende physikalische und chemische Prozesse gewinnen, die für die Moleküldynamik – beispielsweise während chemischer Reaktionen oder in der Katalyse – von Bedeutung sind“, erklärt Leonhard Grill, Leiter des Grazer Teams. Für die Studie brachten die Wissenschaftler organische Moleküle mit einer Länge von etwa zwei Nanometern auf einer Silberoberfläche mit der feinen Metallspitze eines Rastertunnelmikroskops in eine besondere Ausrichtung, in der sie sogar bei -266° C noch extrem mobil sind. „Wir konnten zeigen, dass sich die Moleküle trotz der sehr flachen Oberfläche entlang einer einzigen Atomreihe, also nur in eine Richtung, bewegen“, beschreibt der Forscher.

Wenn nun ein elektrisches Feld eingeschaltet wird, lassen sich durch elektrostatische Kräfte einzelne Moleküle wie auf Schienen perfekt entlang einer geraden Linie bewegen. Dadurch können diese Teilchen – je nach Ausrichtung des Feldes – entweder durch die abstoßende Wirkung gezielt gesendet oder durch die Anziehungskraft aus großer Distanz empfangen werden. Dies geschieht über verhältnismäßig weite Strecken von 150 Nanometer, gleichzeitig mit extrem hoher Präzision von 0.01 Nanometer. „Während dieses Vorgangs ist es uns außerdem gelungen die Zeit zu messen, also die Geschwindigkeit eines einzelnen Moleküls direkt zu bestimmen“, ergänzt Grill. Diese lag bei etwa 0.1 mm pro Sekunde. „Das eröffnet völlig neue Möglichkeiten für die Untersuchung molekularer Energien während chemischer Reaktionen.“

Darüber hinaus konnten die Forscher ein Sender-Empfänger-Experiment realisieren, bei dem ein einzelnes Molekül zwischen zwei Orten gezielt transferiert wurde: Zwei getrennte Rastertunnelmikroskopspitzen werden zunächst geeignet positioniert, dann die „Senderspitze“ vom anziehenden in den abstoßenden Modus umgeschaltet. Dadurch bewegt sich das Molekül exakt an den Ort der „Empfängerspitze“ und transferiert die im Teilchen enthaltene Information (wie Elementzusammensetzung oder atomare Anordnung) mit hoher räumlicher Präzision.

Fakten, Hintergründe, Dossiers
  • Moleküle
  • chemische Reaktionen
Mehr über Karl-Franzens-Universität Graz
  • News

    Wie man Biosprit aus Hefezellen gewinnt

    Biologisch hergestellter Treibstoff ist einer der Hoffnungsträger einer künftigen Energiewende. Verbrennungsmotoren mit klimaneutral hergestelltem Diesel oder Benzin könnten neben E-Mobilität den Ausstieg aus fossilen Energieträgern unterstützen. Derzeit muss dieser „Biosprit“ aber aus hoch ... mehr

    Flexibel durch Fehler

    Elektronische Bauteile wie Schalter oder Transistoren, die aus einem einzigen Molekül bestehen, könnten in Zukunft die Technik revolutionieren. Die Grundlagen dafür erforscht die Arbeitsgruppe Single-Molecule Chemistry an der Universität Graz unter der Leitung von Leonhard Grill. Das Team h ... mehr

    Lichtaktive Mikroalgen als Bio-Katalysatoren

    Ein blaugrüner Algenteppich kann das sommerliche Badevergnügen am See wörtlich „trüben“: Ursache sind einige Stämme von photosynthetisch aktiven Mikroalgen, auch Cyanobakterien genannt. Andere Stämme von Cyanobakterien, welche für den Menschen harmlos sind, haben ein großes Potential für bi ... mehr

  • q&more Artikel

    Lipidomics – der neue Stern am „OMICS“-Himmel

    Vor allem technologische und analytische Fortschritte bringen die Forschung voran. Dies gilt im biomedizinischen Bereich insbesondere für das Gebiet der Lipidforschung, das jahrzehntelang durch das Fehlen geeigneter Analysemethoden zur Untersuchung der enormen Komplexität von Lipiden im men ... mehr

  • Autoren

    Prof. Dr. Sepp D. Kohlwein

    Sepp D. Kohlwein, Jahrgang 1954, studierte Technische Chemie an der Technischen Universität Graz und promovierte dort 1982 am Institut für Biochemie zum Dr. techn. Bis 2001 war dort als assoziierter Professor tätig. Nach mehreren Forschungsaufenthalten am Albert Einstein College of Medicine ... mehr