22.02.2021 - Forschungszentrum Jülich GmbH

Ultraschnelle Elektronendynamik in Raum und Zeit

"Wir glauben, dass unsere Ergebnisse einen entscheidenden Durchbruch auf dem Weg zum Ziel darstellen, Elektronen durch chemische Reaktionen hindurch in Raum und Zeit zu verfolgen“

In Lehrbüchern und Erklärvideos werden sie gerne als farbige Ballons oder Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme. Um den Austausch von Elektronen in chemischen Reaktionen zu verstehen, muss man jedoch nicht nur ihre räumliche Verteilung kennen, sondern gleichzeitig auch genau nachvollziehen können, wie sie sich mit der Zeit bewegen. Wissenschaftlern aus Jülich, Marburg und Graz ist nun ein wichtiger Schritt in diese Richtung gelungen. Sie kombinierten Methoden auf dem neuesten Stand der Laser- und Elektronenspektroskopie und konnten so Orbitalbilder mit extrem hoher Zeitauflösung aufnehmen.

"Seit Jahrzehnten gibt es in der Chemie zwei weitreichende Ziele", erklärt Professor Stefan Tautz, Leiter des Instituts für Quantum Nanoscience am Forschungszentrum Jülich, "einerseits chemische Reaktionen direkt aus der räumlichen Verteilung von Elektronen in Molekülen zu verstehen, andererseits die Dynamik von Elektronen während einer chemischen Reaktion in der Zeit zu verfolgen." Beide Ziele wurden, getrennt voneinander, in bahnbrechenden Entdeckungen der Chemie bereits erreicht: Die Theorie der Grenzorbitale gab Aufschluss über die Rolle der Elektronenverteilung in Molekülen bei chemischen Reaktionen, während die Femtosekundenspektroskopie erstmals die Beobachtung von Übergangszuständen in den Reaktionen möglich machte. "Es ist schon seit langem ein Traum der Physikalischen Chemie, diese beiden Entwicklungen miteinander zu verknüpfen, und so die Elektronen in einer chemischen Reaktion in Zeit und Raum genau zu verfolgen."

Diesem Ziel sind die Wissenschaftler nun einen großen Schritt näher gekommen, indem sie Elektronen beim Transfer durch eine Grenzfläche zwischen einer Molekülschicht und einem Metall in Raum und Zeit beobachtet haben. Solche Grenzflächen werden im Sonderforschungsbereich 1083 der Deutschen Forschungsgemeinschaft an der Universität Marburg erforscht, in dessen Rahmen auch die nun veröffentlichten Experimente durchgeführt wurden. "Grenzflächen scheinen zunächst nichts weiter als das Nebeneinander zweier Schichten – doch sie sind der Ort, an dem sich die Funktionen der Materialien überhaupt erst manifestieren. Ihnen kommt deshalb eine überragende technologische Bedeutung zu", erklärt Ulrich Höfer, Professor für Experimentalphysik an der Philipps-Universität Marburg und Sprecher des Sonderforschungsbereichs. In organischen Solarzellen etwa erreicht man durch die Kombination verschiedener Materialien an einer Grenzfläche, dass die durch das eingestrahlte Licht angeregten Zustände besser aufgespalten werden und somit Strom fließt. Auch in den organischen Leuchtdioden sogenannter OLED-Displays, wie sie etwa in Smartphones verwendet werden, spielen Grenzflächen eine wichtige Rolle.

Der experimentelle Ansatz der Wissenschaftler basiert auf einem erst vor wenigen Jahren erfolgten Durchbruch in der Spektroskopie von Molekülen: der Photoemissions-Orbital-Tomographie, die auf dem lange bekannten Photoeffekt beruht. "Dabei wird eine Molekülschicht auf einer Metalloberfläche mit Photonen, also Lichtteilchen, beschossen, woraufhin sich die energetisch angeregten Elektronen herauslösen", erklärt Professor Peter Puschnig von der Karl-Franzens-Universität Graz. "Diese fliegen danach aber nicht zufällig in den Raum hinaus, sondern lassen, und das ist der entscheidende Punkt, aufgrund ihrer Winkel- und Energieverteilung Rückschlüsse auf die räumliche Verteilung der Elektronen in den Molekülorbitalen zu."

"Der entscheidende Erfolg unserer Arbeit ist, dass wir die Orbital-Tomogramme mit ultrahoher Auflösung durch die Zeit verfolgen", sagt Dr. Robert Wallauer, Gruppenleiter und Nachwuchswissenschaftler an der Universität Marburg. Dazu verwendeten die Wissenschaftler nicht nur einen speziellen Laser mit ultrakurzen Pulsen im Femtosekundenbereich, mit dem sie die Elektronen in den Molekülen anregten, sondern auch ein neuartiges Impulsmikroskop, mit dem sie gleichzeitig Richtung und Energie der herausgelösten Elektronen mit hoher Empfindlichkeit messen konnten. Eine Femtosekunde beträgt 10-15 Sekunden, also den millionsten Teil einer Milliardstel Sekunde; im Verhältnis zu einer Sekunde ist dies genauso wenig wie eine Sekunde im Verhältnis zu 32 Millionen Jahren. Derartig kurze Pulse eignen sich wie eine Art Stroboskop-Licht zur Zerlegung von schnellen Vorgängen in einzelne Bilder und erlaubten es den Forschern, den Elektronentransfer wie in Zeitlupe zu verfolgen. "Dies ermöglichte es uns, Elektronenanregungspfade quasi in Echtzeit räumlich zu verfolgen“, so Tautz. „In unserem Experiment wird ein Elektron mit einem ersten Laserpuls von seinem Ausgangszustand zunächst in ein unbesetztes Molekülorbital angeregt, bevor es schließlich durch einen zweiten Laserimpuls den Detektor erreicht. Nicht nur konnten wir den zeitlichen Verlauf dieses Prozesses genau beobachten, sondern mit Hilfe der Tomogramme auch klar nachverfolgen, woher die Elektronen kamen."

"Wir glauben, dass unsere Ergebnisse einen entscheidenden Durchbruch auf dem Weg zum Ziel darstellen, Elektronen durch chemische Reaktionen hindurch in Raum und Zeit zu verfolgen“, so Ulrich Höfer. „Neben den fundamentalen Erkenntnissen über chemische Reaktionen und Elektronentransferpozesse werden diese Erkenntnisse auch ganz praktische Auswirkungen haben. Sie eröffnen unzählige Möglichkeiten für die Optimierung von Grenzflächen und Nanostrukturen und die darauf beruhenden Prozessoren, Sensoren, Displays, organischen Solarzellen, Katalysatoren und möglicherweise sogar für Anwendungen und Technologien, an die wir bisher noch gar nicht gedacht haben."

Fakten, Hintergründe, Dossiers
  • Elektronenorbitale
  • Elektronen
  • chemische Reaktionen
Mehr über Forschungszentrum Jülich
  • News

    Mit Nanoschichten zu langlebigen Festkörperbatterien

    Festkörperbatterien könnten künftig zur Alternative für Lithiumbatterien werden und Elektroautos zu längeren Reichweiten verhelfen. Doch derzeit sind sie noch nicht langlebig genug. Ein Team des Fritz-Haber-Institutes, der TU München und des Forschungszentrum Jülich weist jetzt jedoch einen ... mehr

    Mechanismus entschlüsselt: Wie organische Säuren in der Atmosphäre entstehen

    Der Säuregehalt der Atmosphäre wird zunehmend von Kohlendioxid und organischen Säuren wie Ameisensäure bestimmt. Letztere tragen zur Bildung von Aerosol-Partikeln als Vorläufer von Regentropfen bei und beeinflussen damit Wachstum von Wolken und den pH-Wert von Regenwasser. In bisherigen Mod ... mehr

    Durchsichtige Nanoschichten für mehr Solarstrom

    Günstiger als mit Sonne lässt sich heute kein Strom erzeugen. An sonnigen Standorten entstehen derzeit Kraftwerke, die Solarstrom sogar für weniger als zwei Cent pro Kilowattstunde liefern werden. Auf dem Markt erhältliche Solarzellen auf der Basis von kristallinem Silizium machen dies mit ... mehr

  • Videos

    Zukunft ist unsere Aufgabe: Das Forschungszentrum Jülich

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung in den Bereichen Energie und Umwelt sowie Information und Gehirn. Es stellt sich drängenden Fragen der Gegenwart und entwickelt Schlüsseltechnologien für morgen. mehr

    Die (R)Evolution der Elektronenmikroskopie - So funktioniert PICO

    Das Elektronenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern. Es ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen und Fortschritte in Bereichen wie der Energieforschung oder den Informationstec ... mehr

  • Stellenangebote

    Doktorand (w/m/d) – Untersuchung und Weiter­entwicklung von Extraktionsprozessen zur selektiven Abtrennung von Americium

    Verstärken Sie diesen Bereich zum nächstmöglichen Zeit­punkt als Ihre Aufgaben: Die wissenschaftliche Untersuchung und Weiterentwicklung von Extraktionsprozessen sowie der grund­legenden Chemie zur Abtrennung von Americium aus hochradioaktiven Abfällen wird international intensiv diskutie ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Erfolgreiche Wissenschaft braucht mehr als gute Forschung. Damit öffentliche Förderprogramme ihre Ziele erreichen, Industriepartner und Forschungseinrichtungen gewinnbringend zusammenarbeiten und Forscher über Fördermöglichkeiten in ihrem Arbeitsfeld gut informiert sind, ist Sachverstand im ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr