15.12.2020 - Ruprecht-Karls-Universität Heidelberg

Zwei, sechs, viele

Phasenübergänge: Emergenz von kollektivem Verhalten beobachtet

Phasenübergänge beschreiben dramatische Veränderungen der Eigenschaften eines makroskopischen Systems – zum Beispiel den Wechsel von flüssig zu gasförmig. Ausgehend von einzelnen, ultrakalten Atomen ist es Physikern der Universität Heidelberg in Experimenten gelungen, bei zunehmender Teilchenzahl die Entstehung eines solchen Übergangs zu beobachten. Durchgeführt wurden die Forschungsarbeiten auf dem Gebiet der Quantenphysik unter Leitung von Prof. Dr. Selim Jochim vom Physikalischen Institut.

Um effektive Theorien in der Physik formulieren zu können, werden mikroskopische Details vernachlässigt zugunsten einer Beschreibung makroskopisch beobachtbarer Größen. Der Inhalt einer Tasse Wasser lässt sich etwa durch Eigenschaften wie Druck, Temperatur und Dichte der Flüssigkeit effizient beschreiben; die Position und Geschwindigkeit der einzelnen Wassermoleküle spielen dabei keine Rolle. Ein Phasenübergang beschreibt den Wechsel eines makroskopischen Systems von einem Zustand der Materie, zum Beispiel flüssig, in einen anderen Zustand, zum Beispiel gasförmig. Diese Eigenschaften der makroskopischen Systeme – sogenannte Vielteichensysteme – können als emergent bezeichnet werden: Sie ergeben sich erst aus dem Zusammenwirken der Einzelteile, die selbst diese Eigenschaften nicht aufweisen.

„Seit langem beschäftigt mich die Frage, wie diese dramatische makroskopische Veränderung bei einem Phasenübergang aus der mikroskopischen Beschreibung entsteht“, sagt Selim Jochim. Zur Beantwortung dieser Frage entwarfen die Forscher ein Experiment, bei dem sie ein System aus einzelnen, ultrakalten Atomen zusammengesetzt haben. Mithilfe dieses Quantensimulators untersuchten sie, wie kollektives Verhalten in einem mikroskopischen System entsteht. Zu diesem Zweck wurden bis zu zwölf Atome in einem stark fokussierten Laserstrahl eingefangen. In diesem künstlichen System ist es möglich, die Stärke der Wechselwirkung zwischen den Atomen kontinuierlich über einen so großen Bereich zu verstellen, dass sie entweder komplett zu vernachlässigen oder die größte Energieskala im System ist. „Die Anzahl der Teilchen ist einerseits klein genug für eine mikroskopische Beschreibung des Systems. Andererseits zeigen sich hier schon kollektive Effekte“, erläutert Luca Bayha, Postdoktorand im Team von Prof. Jochim.

Die Heidelberger Physiker haben in ihrem Experiment den Quantensimulator so konfiguriert, dass sich die Atome gegenseitig anziehen und bei starker Anziehung Paare bilden. Diese Atom-Paare sind der notwendige Bestandteil für einen Phasenübergang zu einer Supraflüssigkeit – ein Zustand, bei dem Teilchen ohne Reibung strömen. Die Frage, wann es zu dieser Paarbildung in Abhängigkeit von der Stärke der Wechselwirkung sowie der Anzahl der Teilchen kommt, stand im Mittelpunkt der Untersuchungen. „Das überraschende Ergebnis unseres Experimentes ist, dass sich bereits mit sechs Atomen alle Anzeichen des Phasenübergangs beobachten lassen, die für ein Vielteilchen-System erwartet werden“, so Marvin Holten, Doktorand in der Gruppe von Selim Jochim.

Fakten, Hintergründe, Dossiers
  • Phasenübergänge
  • Vielteilchensysteme
  • ultrakalte Atome
Mehr über Ruprecht-Karls-Universität Heidelberg
  • News

    3-D-Laser-Nanodrucker als kleines Tischgerät

    Die Laser in heutigen Laserdruckern für Papierausdrucke sind winzig klein. Bei 3-D-Laserdruckern, die dreidimensionale Mikro- und Nanostrukturen drucken, sind dagegen bisher große und kostspielige Lasersysteme notwendig. Forschende am Karlsruher Institut für Technologie (KIT) und an der Uni ... mehr

    Silizium mit zweidimensionaler Struktur

    Das Halbmetall Silizium tritt in seiner natürlichen Form mit vier Bindungen zu anderen Elementen auf und hat in seiner dreidimensionalen Struktur die Form eines Tetraeders. Ein zweidimensionales Pendant – geometrisch gesehen ein Quadrat – zu synthetisieren und zu charakterisieren, schien la ... mehr

    Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen

    Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere Herausforderung dar, die Art und Anzahl der Defekte zu kontrollieren. Für Kohlenstoffnanoröh ... mehr

  • Videos

    Campus-TV: Was wiegt ein Neutrino?

    Die Masse des Elementarteilchens Neutrino zu bestimmen, gehört zu den Hauptzielen einer neuen Forschergruppe, die mit Förderung der Deutschen Forschungsgemeinschaft (DFG) an der Universität Heidelberg eingerichtet wird. Für die Forschungsarbeiten, die im April 2015 begonnen haben, stellt di ... mehr

    Campus-TV: Liefert Kernfusion die Energie der Zukunft?

    Seit mehr als fünfzig Jahren wird daran geforscht, die Energie der Sonne auch auf der Erde sinnvoll zu nutzen. Am neuen Forschungskraftwerk Wendelstein 7X wurde bereits ein dafür nötiges Plasma erzeugt. mehr