18.12.2020 - Karlsruher Institut für Technologie (KIT)

Dreidimensionaler Blick in aktive Katalysatoren

Operando-Röntgenspektroskopie eröffnet neue Möglichkeiten für die Material- und Reaktionsdiagnostik

Struktur und Funktion von Katalysatoren in Aktion zu verstehen – das ermöglicht ein von Forschenden des Karlsruher Instituts für Technologie (KIT) mit Kollegen an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts PSI in der Schweiz und an der European Synchrotron Radiation Facility (ESRF) in Frankreich eingesetztes innovatives Diagnoseinstrument: Die operando-Röntgenspektroskopie visualisiert Struktur und Gradienten komplexer technischer Katalysatoren in 3D und erlaubt einen Blick ins Innere funktionierender chemischer Reaktoren.

Die Katalyse ist für viele Branchen unentbehrlich. So werden 95 Prozent aller Chemikalien mithilfe von Katalysatoren hergestellt. Auch für Energietechnologien und beim Umweltschutz übernehmen Katalysatoren eine Schlüsselrolle. Katalysatoren sind Stoffe, die chemische Reaktionen beschleunigen, um Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Auf diesem chemisch-physikalischen Prinzip basieren ganze Anlagen, beispielsweise Katalysatoren in Fahrzeugen oder Kraftwerken zur Reduktion von Schadstoffemissionen in der Abluft. Technische und industrielle Katalysatoren werden unter anderem auch in der Düngemittel- und in der Polymerherstellung eingesetzt. Oft müssen sie einem hohen Druck standhalten und eine hohe mechanische Festigkeit aufweisen. Darüber hinaus arbeiten sie unter dynamischen Umgebungsbedingungen. Bei Katalysatoren bringen schon kleine Effizienzsteigerungen wesentliche Vorteile für Mensch und Umwelt, sei es bei der Entfernung von Schadstoffen wie Kohlenmonoxid, Stickoxiden und Feinstaub aus Abgasen, sei es bei der Produktion von grünem Wasserstoff. Um katalytische Materialien und Methoden zu verbessern, bedarf es allerdings eines genauen Verständnisses ihrer Funktion. „Ob in einem großen chemischen Reaktor, in einer Batterie oder unter einem Auto – technische und industrielle Katalysatoren besitzen eine hochkomplexe Struktur”, sagt Dr. Thomas Sheppard vom Institut für Technische Chemie und Polymerchemie (ITCP) des KIT. „Um wirklich zu verstehen, wie diese Materialien funktionieren, müssen wir einen Blick in das Innere des Reaktors werfen, während der Katalysator arbeitet – am besten mit einem analytischen Werkzeug, das einen Einblick in die komplexe 3D-Struktur des aktiven Katalysators erlaubt.“

Operando-Röntgenspektroskopie liefert 3D- und wichtige chemische Informationen

Thomas Sheppard leitete eine Studie zu Fahrzeugkatalysatoren, über deren Ergebnisse die beteiligten Wissenschaftlerinnen und Wissenschaftler vom KIT sowie vom PSI und von der ESRF nun in der Zeitschrift Nature Catalysis berichten. Zur Untersuchung der Katalysatoren setzte das Team ein neu entwickeltes Set-up ein und führte Tomografie-Experimente an Synchrotronstrahlungsanlagen in der Schweiz und in Frankreich durch. Die Computertomografie liefert 3D-Bilder einer Probe, und zwar sowohl von außen als auch von innen, ohne dass die Probe aufgeschnitten werden muss. Anhand eines speziellen Reaktors verfolgten die Forschenden einen aktiven katalytischen Prozess mit Tomografie und Röntgenspektroskopie. So gelang es ihnen, die 3D-Struktur eines Katalysators zur Emissionskontrolle unter Bedingungen zu beobachten, die denen in realen Autoabgasen entsprechen. Diese sogenannte operando-Röntgenspektroskopie liefert nicht nur die 3D-Struktur der Probe, sondern auch wichtige chemische Informationen.

Methode eignet sich für verschiedene Katalysatoren

„Da Katalysatoren oft eine so komplexe und uneinheitliche Struktur aufweisen, ist es wichtig zu wissen, ob das gesamte Katalysatorvolumen oder nur Teile davon ihre chemische Funktion wie vorgesehen erfüllen“, erklärt Johannes Becher vom ITCP, einer der Hauptautoren der Studie. „Mit der operando-Röntgenspektroskopie können wir die spezifische Struktur und Funktion jedes einzelnen Teils betrachten. Dies zeigt uns, ob der Katalysator mit maximaler Effizienz arbeitet und – was noch wichtiger ist – ermöglicht uns, die zugrunde liegenden Prozesse zu verstehen.“ Während der Reaktion beobachtete das Team einen strukturellen Gradienten der aktiven Kupferspezies innerhalb des Katalysators, der zuvor mit herkömmlichen analytischen Werkzeugen nicht nachgewiesen werden konnte. Dies ist eine wichtige diagnostische Information für die Leistung von Katalysatoren zur Emissionskontrolle. Die Methode an sich lässt sich jedoch für viele verschiedene Katalysatoren und chemische Prozesse anwenden.

Neue Möglichkeiten für die Material- und Reaktionsdiagnostik

Die Studien des Teams zeigen, wie die Visualisierung des chemischen Zustands eines aktiven Katalysators in 3D neue Möglichkeiten für die Material- und Reaktionsdiagnostik eröffnet. „Bisher war es nicht möglich zu untersuchen, welche Reaktionen in einem beliebig gewählten Teil eines funktionierenden Katalysators ablaufen, ohne sie zu stören. Nun können wir genau verfolgen, welche Reaktionen ablaufen, wo und warum", erklärt Professor Jan-Dierk Grunwaldt vom ITCP. „Dies ist der Schlüssel zu einem besseren Verständnis der chemischen Prozesse und zur Entwicklung besserer und effizienterer Katalysatoren in der Zukunft.“ Studien mit der operando-Röntgenspektroskopie lassen sich an verschiedenen Synchrotronstrahlungsquellen realisieren, sofern eine geeignete Probenumgebung vorhanden ist. Die Forschungsgruppen von Jan-Dierk Grunwaldt und Thomas Sheppard werden ihre Untersuchungen im neuen Sonderforschungsbereich „TrackAct“ am KIT fortsetzen. „TrackAct“ zielt darauf, das Design und die Effizienz von Katalysatoren zur Emissionskontrolle zu verstehen und zu verbessern.

Fakten, Hintergründe, Dossiers
Mehr über KIT
  • News

    Katalysatorforschung: Molekulare Sonden erfordern hochgenaue Rechnungen

    Katalysatoren machen viele Technologien überhaupt erst möglich. Um heterogene Katalysatoren weiter zu verbessern, bedarf es der Analyse der komplexen Prozesse an ihrer Oberfläche, wo sich die aktiven Zentren befinden. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Kolle ... mehr

    KIT und Audi arbeiten an chemische Recycling-Methode für automobile Kunststoffe

    Zahlreiche Bauteile in Autos werden aus Kunststoffen gefertigt. Für sie gelten hohe Anforderungen an Sicherheit, Hitzebeständigkeit und Qualität. Besonders intensiv beanspruchte Kunststoffbauteile in Autos können daher bislang nur aus Materialien auf Erdölbasis hergestellt werden. Diese kön ... mehr

    Edelmetallcluster können Katalysatoren leistungsfähig machen und Ressourcen schonen

    Katalysatoren aus Edelmetallen werden weltweit milliardenfach eingesetzt, etwa bei der Herstellung von Chemikalien, zur Energieerzeugung und zur Aufreinigung der Luft. Die dafür benötigten Rohstoffe sind jedoch teuer und ihre Vorkommen begrenzt. Sie optimal zu nutzen, ist das Ziel von Katal ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Stellenangebote

    Wissenschaftliche Mitarbeiterin / Wissenschaftlichen Mitarbeiter (w/m/d) – mit abgeschlossener Promotion –

    Wir suchen für das Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS) ab sofort, befristet bis 30.06.2023, eine/einen Wissenschaftlicher Mitarbeiter mit abgeschlossener Promotion mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr