14.01.2021 - Technische Universität Bergakademie Freiberg

Wie aus Apfeltrester Ethanol gewonnen werden kann

Chemiker optimieren Verfahren zur Verwertung von Biomasse

Reststoffe aus der Apfelsaftproduktion werden in Deutschland bisher meist zu Tierfutter verarbeitet. Doch aus Apfelschalen und -kernen können auch höherwertige Produkte gewonnen werden – neben Ethanol auch Essig- und Zitronensäure.

Die Weiterverwendung des Apfeltresters durch Hydrolyse und Fermentation bietet für Betreiber von Saftpressen in Deutschland damit großes Potenzial, berichten Chemiker der TU Bergakademie Freiberg in der Zeitschrift „Chemie Ingenieur Technik“.

Bio-Ethanol, das als Grundchemikalie etwa in Desinfektionsmittel oder Biokraftstoff einsetzbar ist, wird bisher vorrangig aus Zuckerrüben und Getreide hergestellt. Der Universal-Stoff könnte künftig aber auch aus Resten der Apfelsaftproduktion gewonnen werden. Besonders geeignet dafür ist der Apfeltrester, die festen Bestandteile aus Stielen, Kernen, Fruchtfleisch und Schalen, die nach dem Pressen der Äpfel übrigbleiben. Darin enthalten sind neben Zucker auch Stärke, das Verdickungsmittel Pektin und Zellulose. Diese Stoffe können durch Hydrolyse und anschließende Fermentation in höherwertige Produkte, wie Ethanol, aber auch Essig- und Zitronensäure umgewandelt werden. Das Problem: Bisher konnten nur geringe Ethanol-Konzentrationen aus Apfeltrester gewonnen werden.

Ein Team um Chemie-Professor Martin Bertau von der TU Bergakademie Freiberg hat nun ein optimiertes Verfahren vorgestellt mit dem Ethanol mit einem Alkoholgehalt von bis zu 6 Prozent hergestellt werden kann. „Bisherige Methoden erreichen bei Apfeltrester einen Ethanol-Gehalt von bis zu 4,7 Prozent“, verdeutlicht Dr. Doreen Kaiser, die den neuen Prozess in Laborversuchen entwickelt und getestet hat.

Besserer Gärungsprozess durch leistungsfähigen Enzymkomplex

Um reineres Ethanol aus dem Apfeltrester herzustellen, hat das Wissenschaftler-Team einen alternativen Enzymkomplex eingesetzt der aus dem Mikroorganismus Penicillium verruculosum gewonnen wird. Wie auch andere Enzymkomplexe hat der nun erstmals für dieses Verfahren verwendete Cellulasekomplex die Fähigkeit, die langkettigen Zuckermoleküle in Einfachzucker zu spalten. Werden die Einfachzucker nun mit Hilfe von Hefe vergärt und die wasserhaltige Lösung destilliert, erhalten die Chemiker das Ethanol in der gewünschten Konzentration. „Im Vergleich zu den bisher eingesetzten Biokatalysatoren hat sich der Cellulasekomplex aus Penicillium verruculosum als besonders robust gegenüber Störfaktoren der Reaktion herausgestellt. Aus diesem Grund kann eine größere Menge Apfeltrester als bei herkömmlichen Fermentations-Prozessen eingesetzt werden und in der Folge höhere Ethanol-Konzentrationen gewonnen werden“, erklärt Dr. Doreen Kaiser.

Potenzial für Bio-basierte Industrie in der Obstproduktion

Bis zu 650 Millionen Liter Apfelsaft werden in Deutschland pro Jahr hergestellt. Als Koppelprodukt fallen dabei jährlich bis zu 300.000 Tonnen Apfeltrester an (Quelle: Statista). Zu schade, um als Futtermittel im Schweinstall zu landen. Die alkoholische Chemikalie eignet sich sehr gut zur Herstellung von Desinfektionsmittel, welches Apfelsafthersteller zur Reinigung direkt in ihrem Betrieb weiter verwenden könnten. Und sogar Bio-Kraftstoff ließe sich aus der Lösung herstellen.

Fakten, Hintergründe, Dossiers
  • Trester
  • Äpfel
  • Penicillium verruculosum
  • Enzyme
  • Biokatalysatoren
Mehr über TU Bergakademie Freiberg
  • News

    Kleine Helfer für die Metallgewinnung

    Biohydrometallurgen der TU Bergakademie Freiberg haben erstmals nachgewiesen, dass die Laugung mit Hilfe von Bakterien auch beim Recycling von Elektroschrott zur Trennung der Bauteile eingesetzt werden kann. Seine Forschungsergebnisse zur Gewinnung von Metallen publizierte das Team um Profe ... mehr

    Wenn Kristalle Blitze werfen

    Die Pyroelektrizität ist ein Phänomen der Physik, bei dem Wärme über bestimmte Kristalle in Strom umgewandelt oder die entstehende Spannung für chemische Reaktionen genutzt werden kann. Während die erste Anwendung heute schon in Geräten wie Bewegungsmeldern angewendet wird, ist die zweite z ... mehr

    Klimafreundliches Benzin

    Die TU Freiberg erforscht im Projekt C3 Mobility gemeinsam mit dem Chemieanlagenbau Chemnitz und weiteren Partnern aus der Automobil- und Mineralölindustrie neue Wege in die CO2-neutrale Mobilität. Die STF-Benzinsyntheseanlage der TU Freiberg produzierte die ersten 16.000 Liter des grünen B ... mehr