10.02.2021 - Technische Universität Wien

Zwei-Phasen-Material mit überraschenden Eigenschaften

Mikrostruktur und makroskopische elektro-mechanische Eigenschaften sind bei sogenannten ferroelektrischen Polymeren eng miteinander gekoppelt. An der TU Wien wurde nun eine Erklärung für die hohe Temperaturabhängigkeit dieser Kopplung gefunden.

Bei bestimmten Materialien sind elektrische und mechanische Effekte eng miteinander verknüpft: So kann es etwa sein, dass das Material seine Form verändert, wenn man ein elektrisches Feld anlegt, oder dass umgekehrt ein elektrisches Feld entsteht, wenn man das Material verformt. Für viele technische Anwendungen sind solche elektromechanisch aktiven Materialien sehr wichtig.

Meist handelt es sich bei solchen Materialien um spezielle, anorganische Kristalle, diese sind allerdings hart und spröde. Daher setzt man nun auch sogenannte ferroelektrische Polymere ein. Sie zeichnen sich dadurch aus, dass ihre Polymerketten gleichzeitig in zwei verschiedenartigen Mikrostrukturen vorliegen: manche Bereiche sind stark geordnet (kristallin), während sich dazwischen ungeordnete (amorphe) Bereiche ausbilden. Diese semikristallinen Verbundstoffe sind elektromechanisch aktiv und vereinen daher elektrische und mechanische Effekte, gleichzeitig sind sie aber auch biegsam und weich. An der TU Wien wurden solche Materialien nun grundlegend untersucht – mit überraschenden Ergebnissen: ab einer bestimmten Temperatur ändern sich die Eigenschaften dramatisch. Warum das passiert, konnte ein Forschungsteam der TU Wien in Kooperation mit Arbeitsgruppen aus Madrid und London nun erklären.

Vom Mikro-Sensor bis zu smarten Textilien

„Wenn man das mechanische Verhalten eines Materials mit Hilfe elektrischer Felder steuern kann, lassen sich damit etwa winzige Sensoren bauen“, sagt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. „Interessant ist das beispielsweise für Rasterkraftmikroskope, bei denen man eine winzige Spitze in Schwingung versetzt, um damit eine Oberfläche abzutasten und ein Bild zu erzeugen.“

Das Einsatzgebiet solcher Materialien lässt sich dramatisch erweitern, wenn es gelingt, solche elektromechanischen Eigenschaften nicht nur in starren Materialien hervorzurufen, sondern auch in flexiblen, weichen Materialien. Einerseits haben biegsame Materialien ein völlig anderes Schwingungsverhalten, das kann man beim Konstruieren winziger Sensoren ausnützen. Andererseits eröffnen solche Materialien auch Möglichkeiten, die bisher völlig undenkbar waren – etwa smarte Textilien, biegsame Energiespeicher oder Stromgeneratoren.

„Festkörper können etwa kristallin sein, dann sind die Atome in einem regelmäßigen Gitter angeordnet, oder sie sind amorph – da sind die einzelnen Atome zufällig verteilt“, erklärt Jonas Hafner, der im Rahmen seiner Dissertation an diesem Forschungsprojekt arbeitet. „Das Besondere an dem Material, das wir untersucht haben, ist, dass es beides gleichzeitig sein kann: Es bildet kristalline Bereiche aus, dazwischen liegt das Material in amorpher Form vor.“

Die Kristalle sorgen für die elektromechanischen Eigenschaften des Materials, die amorphe Matrix rundherum hält die winzigen Kristalle zusammen, insgesamt entsteht ein sehr biegsames, flexibles Material.  

Bei zu viel Hitze ist Schluss

Um solche Materialien weiterentwickeln und verbessern zu können, untersuchte das Forschungsteam der TU Wien zunächst ihre grundlegenden physikalischen Eigenschaften. Und dabei stieß man auf ein überraschendes Phänomen: Die ferroelektrischen Polymere, die aus der Kombination von kristallinen und amorphen Bereichen bestehen, ändern bei einer bestimmten Temperatur ihre mikroskopische Zusammensetzung – was überraschende Effekte auf das makroskopische elektromechanische Verhalten hat.

Normalerweise verschwinden die elektromechanischen Eigenschaften eines Materials erst dann, wenn eine sehr hohe Temperatur auf atomarer Ebene für so große Schwingungen sorgt, dass die elektrische Ordnung im Material völlig verschwindet. Diese kritische Temperatur bezeichnet man als „Curie-Temperatur“. Doch bei dem nun untersuchten Material ist die Sache komplizierter: „In unserem Fall bleiben die elektromechanischen Eigenschaften der winzigen Kristalle bestehen. Mikroskopisch betrachtet sind die Eigenschaften noch da, aber makroskopisch betrachtet sind sie verschwunden“, sagt Jonas Hafner.

Der verlorene Kontakt zwischen den Kristallkörnchen

Das Team konnte erklären, wie dieser Effekt entsteht: Bei steigender Temperatur vergrößert sich der Anteil der amorphen Bereiche des Polymers und an einem bestimmten Punkt verlieren die winzigen Kristalle den direkten Kontakt zueinander. Dadurch können keine mechanischen Kräfte mehr von einem der winzigen Kristalle zum nächsten weitergegeben werden, weil sie alle vollständig in einer dämpfenden amorphen Matrix eingebettet sind. Dadurch ändert sich das mechanische und elektromechanische Verhalten des Materials dramatisch.

„Nur wenn wir diese grundlegenden Effekte verstehen, können wir auch erklären, wie mikroskopische und makroskopische Eigenschaften solcher Materialien miteinander zusammenhängen“, sagt Ulrich Schmid. „Wir arbeiten mit zahlreichen Projektpartnern zusammen, die solche Materialien dann einsetzen – in Rasterkraftmikroskopen, in Sensoren, in Chips. An Einsatzmöglichkeiten für diese spannende Materialphase mangelt es sicher nicht.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Der Magnet-Effekt ohne Magnet

    Elektrischer Strom kann durch ein Magnetfeld abgelenkt werden – das kann in stromleitenden Materialien zum sogenannten Hall-Effekt führen, den man in der Industrie etwa verwendet, um Magnetfelder zu messen. Eine überraschende Entdeckung gelang nun an der TU Wien: Man untersuchte ein exotisc ... mehr

    Optimale Information über das Unsichtbare

    Mit Laserstrahlen kann man präzise messen, wo sich ein Objekt befindet, oder ob es seine Position verändert. Normalerweise braucht man dafür allerdings freie, ungetrübte Sicht auf dieses Objekt – und diese Voraussetzung ist nicht immer gegeben. So möchte man etwa in der Biomedizin oft Struk ... mehr

    Überraschende Effekte: Einzelne Atome als Katalysatoren

    Metalle wie Gold oder Platin werden oft als Katalysatoren eingesetzt. So dient Platin etwa in Fahrzeugkatalysatoren dazu, giftiges Kohlenmonoxid in ungiftiges Kohlendioxid umzuwandeln. Aufgrund der hohen Kosten solcher Edelmetalle versucht man, sie in Form immer kleinerer Partikel zu nutzen ... mehr

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. mehr

    Noreia

    Zeitraffervideo, das die Installation der Beschichtungsmaschine Noreia an der TU Wien zeigt. mehr

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr