21.05.2021 - Max-Planck-Institut für Struktur und Dynamik der Materie

Neuer Ansatz zur Berechnung von Elektronenstaus in Übergangsmetallen

Forscher des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg und des Ulsan National Institute of Science and Technology (UNIST) in Südkorea herausgefunden, dass die bestehende Methode zur Berechnung eines bestimmten Isolationszustandes Fehler produziert. Stattdessen schlagen sie einen neuen Ansatz vor.

Wasser und Eis bestehen nur aus H₂O-Molekülen und dennoch weisen sie scheinbar unterschiedliche Charaktere auf: Eis ist fest und Wasser die für alle Lebewesen unverzichtbare Flüssigkeit. Auch viele andere Stoffe in der Natur können unterschiedliche Phasen aufweisen – wie zum Beispiel Diamanten und Graphit. Beide bestehen aus Kohlenstoffatomen, aber Diamanten sind transparent und elektrisch isolierend, während der schwarze Graphit Strom leitet.

Viele Zweige der Theorie der kondensierten Materie konzentrieren sich auf die Phasen von Materialien oder auf Phasenvariationen bestimmter Stoffe. In sogenannten "phasenwechselnden Materialien" können die verschiedenen Aggregatzustände durch Änderungen der Temperatur oder des Drucks erreicht werden. Das Übergangsmetall-Dichalcogenid TaS₂ ist eines dieser faszinierenden Beispiele. Es kann verschiedene Materialzustände annehmen, darunter den supraleitenden Zustand, den normalleitenden Zustand und isolierende Eigenschaften. Die Debatte über seinen Tieftemperaturzustand (T < 200K) dauert jedoch an, wobei viele Experimentalphysiker berichten, dass TaS₂ in der Tieftemperaturphase ein Isolator ist, Theoretiker aber behaupten, dass es sich in einem metallischen Zustand befinden muss.

Die Theorien der Quantenmechanik erklären, ob ein bestimmtes Material isolierend oder metallisch ist. Imquantenmechanischen Zustand eines Materials, wie zum Beispiel eines Diamanten, sind alle Elektronen fest an die Atome gebunden und haben keinen Weg, um auf andere Atome zu gelangen. Andererseits haben die Elektronen, wie die Leitungselektronen in Graphit, einen gut ausgebauten Weg, durch den die Ladung transportiert werden kann. Vor rund 80 Jahren fanden die Physiker Mott und Peierls heraus, dass es noch viele weitere subtile Gründe gibt, die das Material isolierend machen. So kann bei dem von Mott vorgeschlagenen Isolationsmechanismus die gut ausgebaute Bahn durch ungewöhnliche Elektron-Elektron-Korrelationen unterbrochen werden - anders als bei normalen Isolatoren wie Diamanten. Für den Tieftemperaturzustand von TaS₂ argumentieren viele Wissenschaftler, dass es sich um einen Isolator vom Mott-Typ handelt, während andere dagegen halten, dass es sich um ein Metall handeln muss.

In Mott-Isolatoren wird der Elektronentransport aufgehalten wie in einem Verkehrsstau. Dieses Phänomen ist im Rahmen der Dichtefunktionaltheorie (DFT) - einem mathematischen Verfahren, das sich mit der Quantenmechanik von Viel-Elektronen-Systemen beschäftigt - gut verstanden. Forscher kombinieren die DFT mit einem weiteren Parameter, dem Hubbard-Typ-U-Potenzial, um zu berechnen, wie der Stau im Elektronentransport entsteht.

Nun haben Forscher am MPSD und dem UNIST jedoch herausgefunden, dass die Kombination von DFT und dem Hubbard-Typ U-Potential leicht zu fehlerhaften Ergebnissen führen kann, insbesondere für die Ladungsdichte-Wellen-Phasen (CDW) von "phasenwechselnden Materialien", wie 1T-TaS₂. Das Team entdeckte dieses Problem bei der genauen Untersuchung des mathematischen Verfahrens, welches dieser Methode zugrunde liegt.

„Wir wissen, dass der CDW-Zustand in der Tieftemperaturphase die Rekonstruktion in einem hexagonalen Sternmuster erzeugt", erklärt Hauptautor Dongbin Shin, ein Postdoktorand am MPSD. „In diesem CDW-Zustand muss das Hubbard-Typ U-Potential auf diesem Sternmuster untergebracht werden. Wir haben jedoch festgestellt, dass die Anwendung des U-Potentials auf den Atomplatz und nicht auf das Sternmuster zu einem erheblichen Fehler in der Berechnung des Mott-Isolationszustandes führt. Dies ist signifikant für die korrekte Beschreibung der Coulomb-Wechselwirkung zwischen CDW-Zuständen."

Die Arbeit des Teams bietet nicht nur eine Lösung für das seit langem bestehende Problem des Mott-Isolationszustands von 1T-TaS₂, sondern schlägt auch den verallgemeinerten Hubbard U-Potential-Ansatz vor, um den Mott-Isolator in der CDW-Phase zu beschreiben und die lokalisierte Coulomb-Wechselwirkung in molekularen Festkörpern zu korrigieren.

Fakten, Hintergründe, Dossiers
  • Phasenwechselmaterialien
  • Übergangsmetall-Dic…
  • Isolatoren
  • Elektronen
  • Übergangsmetalle
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
Mehr über Max-Planck-Gesellschaft
  • News

    Mit einem Antiferromagneten Strom aus Abwärme erzeugen

    Forschende am Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden haben zusammen mit Forschenden der Ohio State University und der University of Cincinnati einen überraschend großen thermoelektrischen Effekt in einem Antiferromagneten entdeckt. Die in Nature Materia ... mehr

    Hohe Auszeichnung für die Entwicklung von künstlicher Photosynthese

    Als einer von drei Preisträgern erhält Markus Antonietti den mit 1.000.000 Euro dotierten internationalen Forschungspreis „Lombardia è Ricerca“ in der Mailänder Scala. Die Forschenden haben Verfahren zur sauberen Energiegewinnung mittels „künstlicher Photosynthese“ nach dem Vorbild der Natu ... mehr

    Erster Blick auf den hydrodynamischen Elektronenfluss in 3D-Materialien

    Elektronen fließen durch die meisten Materialien eher wie ein Gas als wie eine Flüssigkeit, was bedeutet, dass sie nicht miteinander wechselwirken. Lange Zeit wurde vermutet, dass Elektronen unter bestimmten Bedingungen dennoch wie eine Flüssigkeit fließen könnten, aber erst die jüngsten Fo ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Mehr über UNIST