01.10.2021 - Friedrich-Schiller-Universität Jena

Das Unschmelzbare schmelzbar machen

Chemiker entwickeln Methode zur Herstellung von Gläsern aus nicht-schmelzbaren Verbindungen

Chemiker der Universität Jena entwickeln einen Weg, eigentlich nicht schmelzbare metallorganische Gerüstverbindungen – sogenannte MOFs – zu schmelzen. Dies erlaubt die schmelzebasierte Herstellung von Glasbauteilen für Anwendungen in der Energie- und Umwelttechnik.

Gläser sind aus dem täglichen Leben nicht wegzudenken. Einer der wichtigsten Gründe dafür ist, dass Glasgegenstände über den Weg der Schmelze nahezu universell und kostengünstig in den vielfältigsten Formen und Größen hergestellt werden können. Die Verarbeitung in der (zäh-)flüssigen Phase bietet eine Vielfalt, die mit anderen Werkstoffen kaum erreichbar ist. Dies setzt aber voraus, dass das Material, aus dem das Glas in seiner chemischen Zusammensetzung besteht, überhaupt schmelzbar ist.

Besonders großes Interesse haben in den vergangenen Jahren sogenannte metallorganische Gerüstverbindungen erlangt – kurz: MOFs (von engl. Metal Organic Frameworks). Aufgrund ihrer speziellen Eigenschaften wird ihnen ein großes Potenzial für zukünftige Anwendungen in der Energie- und Umwelttechnik zugeschrieben, aber auch in der Sensorik sowie in den Bio- und Lebenswissenschaften. So eignen sie sich etwa als Ausgangsmaterial für Filtermembranen zur Trennung von Gasen in technischen Verbrennungsprozessen oder für die Wasseraufbereitung. Grundlage für die Fülle möglicher Anwendungen ist dabei vor allem eine herausragende Eigenschaft der MOFs: ihre hohe und weitestgehend kontrollierbare Porosität. Denn die Vertreter dieser Stoffklasse bestehen aus anorganischen Teilchen, die durch organische Moleküle zu einem Netzwerk aus Poren verbunden sind. Eine der Herausforderungen ist es, tatsächlich Bauteile aus den überwiegend in Pulverform vorliegenden MOFs herzustellen. Hier kommt der Weg über das Glas ins Spiel.

Trade-Off zwischen Eigenschaften und Verarbeitbarkeit

Doch abgesehen von einigen wenigen Ausnahmen verhindert ausgerechnet die Porosität, dass die Materialien geschmolzen und so zu Bauteilen der gewünschten Form verarbeitet werden können. Chemiker der Friedrich-Schiller-Universität Jena haben nun gemeinsam mit britischen Kollegen eine Lösung für dieses Problem gefunden. Über ihre Forschungsergebnisse berichten sie in der aktuellen Ausgabe des Forschungsmagazins „Nature Communications“.

Um aus MOFs Bauteile für industrielle Anwendungen zu erzeugen, können sie beispielsweise zu sogenannten Hybridgläsern verarbeitet werden. Dazu muss man sie allerdings einschmelzen – ein Vorgang, der in diesem Fall nicht unkompliziert ist. Denn bisher lässt sich nur eine Handvoll Vertreter dieser Stoffklasse auch tatsächlich einschmelzen. „Bei den meisten bekannten MOF-Materialien ist gerade die hohe Porosität einer der Gründe, dass sie – bevor sie beim Erwärmen den Schmelzpunkt erreichen und sich verflüssigen – thermisch zersetzt werden, das heißt, sie verbrennen“, erklärt Vahid Nozari, Doktorand am Lehrstuhl für Glaschemie der Universität Jena. Ausgerechnet die Eigenschaft, die diese Materialien so interessant macht, verhindert also eine mögliche Verarbeitung über den Glasweg.

Ideale Kombination aus Flüssigkeit, Matrixmaterial und Schmelzbedingungen identifizieren

Wie also macht man ein nicht schmelzbares Material schmelzbar, um es dann im flüssigen Zustand formen und verarbeiten zu können? Auf diese Frage hat das Team um den Jenaer Professor Lothar Wondraczek nun eine Antwort gefunden. „Wir haben die Poren mit einer ionischen Flüssigkeit gefüllt, die die innere Oberfläche so stabilisiert, dass sich der Stoff schließlich schmelzen lässt, noch bevor es zu einer Zersetzung kommt“, erklärt Wondraczek die Forschungsarbeiten. Die Jenaer Forschenden konnten so zeigen, wie normalerweise nicht schmelzbare Stoffe aus der MOF-Familie der zeolithischen Imidazolatgerüste (ZIFs) tatsächlich in den flüssigen Zustand überführt und schließlich in ein Glas umgewandelt werden können. „Über diesen Weg ließe sich zukünftig das gewünschte Bauteil, etwa eine Membran oder Scheibe, formen. Reste der hilfsweise verwendeten ionischen Flüssigkeit können im Anschluss wieder ausgewaschen werden.“

Der Schlüssel für zukünftige Anwendungen sind die Reaktionen, die zwischen der ionischen Flüssigkeit und dem MOF-Material stattfinden. Diese bestimmen die Umkehrbarkeit des Prozesses, also die Möglichkeit, die Flüssigkeit nach dem Schmelzvorgang wieder auszuwaschen. Sind die Reaktionen nicht angepasst, so findet entweder keine ausreichende Stabilisierung der Porenoberfläche statt, oder es kommt zu einer unumkehrbaren chemischen Verbindung zwischen MOF und Flüssigkeit. Hierfür müssen also mit Blick auf die gewünschte Anwendung ideale Kombinationen von Flüssigkeiten, Matrixmaterialien und Schmelzbedingungen identifiziert werden, so dass auch großvolumige Objekte möglich werden.

Fakten, Hintergründe, Dossiers
Mehr über Uni Jena
  • News

    High-Speed-Modulation dank Kristallsymmetrie

    Nichtlineare Optik ist in zahlreichen Gebieten der Wissenschaft und Technik von herausragender Bedeutung – insbesondere für die Erzeugung der zweiten Harmonischen, also der Verdopplung der Frequenz eines Lichtstrahls. Auf diese Weise wird beispielsweise unsichtbares Infrarotlicht zum sichtb ... mehr

    Wasserstoff mit weniger Energie erzeugen

    Wie eine von der Natur inspirierte Verbindung Wasserstoff produziert, das hat ein internationales Forschungsteam der Universitäten Jena und Mailand-Bicocca nun erstmals detailliert beschrieben. Die Erkenntnisse sind ein Grundstein zur energieeffizienten Produktion von Wasserstoff als nachha ... mehr

    Hybridmembran verdoppelt Lebensdauer von Batterien

    Die Energiedichte herkömmlicher Lithium-Ionen-Batterien nähert sich einem Sättigungspunkt, der den Anforderungen der Zukunft – etwa in Elektrofahrzeugen – nicht mehr gerecht wird. Lithium-Metall-Batterien können hingegen im Vergleich dazu doppelt so viel Energie pro Gewichtseinheit liefern. ... mehr

  • q&more Artikel

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr