07.01.2021 - Universität Konstanz

Weder flüssig noch fest

Entdeckung von flüssigem Glas wirft Licht auf das alte wissenschaftliche Problem des Glasübergangs

Ein interdisziplinäres Forschungsteam der Universität Konstanz entdeckt einen neuen Aggregatzustand, flüssiges Glas, mit bisher unbekannten Strukturelementen – neue Erkenntnisse über die Eigenschaften von Glas und seine Übergänge.

Obwohl Glas ein allgegenwärtiges Material ist, das wir täglich verwenden, ist seine tatsächliche Natur nach wie vor ein großes Rätsel und die wissenschaftliche Erforschung seiner chemischen und physikalischen Eigenschaften noch längst nicht abgeschlossen. In der Chemie und Physik ist der Begriff Glas ein wandelbares Konzept: Es umfasst die Substanz, die wir als Fensterglas kennen, kann sich aber auch auf eine Reihe anderer Materialien mit Eigenschaften beziehen, die glasähnliches Verhalten aufweisen, darunter zum Beispiel Metalle, Kunststoffe, Proteine und sogar biologische Zellen.

Auch wenn es den Anschein hat, ist Glas alles andere als konventionell fest. Wenn ein Material vom flüssigen in den festen Zustand übergeht, reihen sich die Moleküle normalerweise auf und bilden ein kristallines Gitter. Anders bei Glas: Hier sind die Moleküle regelrecht festgefroren bevor die Kristallisation stattfindet. Dieser seltsame und ungeordnete Zustand ist für Gläser in verschiedenen Systemen charakteristisch und die Wissenschaft versucht immer noch zu verstehen, wie genau dieser metastabile Zustand entsteht.

Neuer Aggregatzustand: flüssiges Glas

Forschung von Prof. Dr. Andreas Zumbusch (Fachbereich Chemie) und Prof. Dr. Matthias Fuchs (Fachbereich Physik), beide an der Universität Konstanz, hat dem Glasrätsel nun eine weitere Komplexitätsebene hinzugefügt. Anhand eines Modellsystems mit Suspensionen aus maßgeschneiderten ellipsoiden Kolloiden entdeckten die Forscher einen neuen Materiezustand, flüssiges Glas, in dem sich einzelne Teilchen zwar bewegen, aber nicht drehen können – ein komplexes Verhalten, das bisher in Gläsern nicht beobachtet wurde. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift „Proceedings of the National Academy of Sciences of the United States of America” (PNAS) veröffentlicht.

Kolloidale Suspensionen sind Gemische oder Flüssigkeiten, die feste Teilchen enthalten, die mit Größen von einem Mikrometer (ein Millionstel Meter) oder mehr größer als Atome oder Moleküle sind und sich daher gut für die Untersuchung mit dem Lichtmikroskop eignen. Sie werden gern von Forschenden, die Glasübergänge untersuchen, verwendet, weil sie viele der Phänomene aufweisen, die auch in anderen glasbildenden Materialien auftreten.

Maßgeschneiderte ellipsoide Kolloide

Bislang bauten die meisten Experimente mit kolloidalen Suspensionen auf sphärischen Kolloiden auf. Der Großteil natürlicher und technischer Systeme besteht allerdings aus nicht-sphärischen Partikeln. Mit Hilfe der Polymerchemie stellte das Team um Andreas Zumbusch kleine Kunststoffpartikel her, streckte und kühlte sie, bis sie ihre ellipsoide Form erreichten und brachte sie dann in ein geeignetes Lösungsmittel. „Aufgrund ihrer besonderen Form haben unsere Teilchen – im Gegensatz zu sphärischen Teilchen – eine Ausrichtung. Dies führt zu völlig neuen und bisher nicht untersuchten Arten von komplexem Verhalten“, erklärt Zumbusch, Professor für Physikalische Chemie und Hauptautor der Studie.

Anschließend veränderten die Forscher die Partikelkonzentration in den Suspensionen und verfolgten mit Hilfe der Konfokalmikroskopie sowohl die Translations- als auch die Rotationsbewegung der Partikel. Zumbusch fährt fort: „Bei bestimmten Teilchendichten friert die Orientierung ein, während die Translationsbewegung bestehen bleibt, was zu glasartigen Zuständen führt, bei denen die Teilchen sich in Clustern zusammenballen und lokale Strukturen mit ähnlicher Ausrichtung bilden.“ Das, was die Forscher als flüssiges Glas bezeichnen, entsteht dadurch, dass sich diese Cluster gegenseitig behindern und charakteristische räumliche Korrelationen mit großer Reichweite bilden. Diese verhindern die Entstehung von flüssigen Kristallen, was der allgemein geordnete Aggregatzustand wäre, den man im Rahmen der Thermodynamik erwarten würde.

Zwei konkurrierende Glasübergänge

Was die Forscher beobachteten, waren tatsächlich zwei konkurrierende Glasübergänge – eine reguläre Phasenumwandlung und eine Nicht-Gleichgewichtsphasenumwandlung – die miteinander interagierten. „Das ist aus theoretischer Sicht unglaublich interessant“, kommentiert Matthias Fuchs, Professor für Theorie der weichen Materie an der Universität Konstanz und der zweite Hauptautor der Arbeit. „Unsere Experimente liefern die Art von Beweisen für das Zusammenspiel zwischen entscheidenden Fluktuationen und glasartiger Verfestigung, nach denen die wissenschaftliche Gemeinschaft seit geraumer Zeit gesucht hat.“ Flüssiges Glas war nämlich zwanzig Jahre lang eine theoretische Vermutung geblieben.

Die Ergebnisse deuten außerdem darauf hin, dass es eine ähnliche Dynamik auch in anderen glasbildenden Systemen geben könnte und könnten somit dazu beitragen, das Verhalten komplexer Systeme und Moleküle vom ganz Kleinen (biologisch) bis zum ganz Großen (kosmologisch) zu verstehen. Sie haben möglicherweise auch Auswirkungen auf die Entwicklung von flüssigkristallinen Elementen.

Fakten, Hintergründe, Dossiers
  • Glas
  • Glasübergänge
  • Phasenumwandlungen
Mehr über Uni Konstanz
  • News

    Dynamische Nanowelt im Fokus

    Physiker der Universität Konstanz, der Ludwig-Maximilians-Universität München (LMU München) und der Universität Regensburg haben experimentell nachgewiesen, dass ultrakurze Elektronenpulse durch die Interaktion mit Lichtwellen in nanophotonischen Materialien eine quantenmechanische Phasenve ... mehr

    Attosekunden-Durchbruch für Elektronen­mikroskopie

    Elektronenmikroskope geben uns Einblick in kleinste Materiedetails und können beispielsweise den atomaren Aufbau von Materialien, die Struktur von Proteinen oder die Form von Viruspartikeln sichtbar machen. Die meisten Materialien in der Natur sind jedoch nicht statisch, sondern interagiere ... mehr

    Direkte Kopplung zweier nahe beieinanderstehender Sensoren im Nanobereich

    Sie sehen aus wie Zahnstocher, nur dass sie winzig klein sind: 10.000-mal kürzer und 1.000-mal dünner. Im Arbeitsbereich der Physikerin Prof. Dr. Eva Weig ist es an der Universität Konstanz gelungen, Nanosäulen so nah aneinander zu bauen, dass sie durch die Verspannung im Boden gekoppelt we ... mehr