01.12.2021 - Karlsruher Institut für Technologie (KIT)

3-D-Laser-Nanodrucker als kleines Tischgerät

Forscher zeigen, wie dreidimensionale Nanostrukturen mit kompakten Tischgeräten gedruckt werden können

Die Laser in heutigen Laserdruckern für Papierausdrucke sind winzig klein. Bei 3-D-Laserdruckern, die dreidimensionale Mikro- und Nanostrukturen drucken, sind dagegen bisher große und kostspielige Lasersysteme notwendig. Forschende am Karlsruher Institut für Technologie (KIT) und an der Universität Heidelberg nutzen nun stattdessen ein anderes Verfahren. Die Zwei-Stufen-Absorption funktioniert mit winzig kleinen blauen Laserdioden, die kostengünstig sind. Dadurch ist es möglich, mit weitaus kleineren Druckern zu arbeiten.

Für additive Fertigung mit 3-D-Druck ist Laserdrucken heute das Verfahren der Wahl, denn es bietet von allen Verfahren die beste räumliche Auflösung und zugleich eine extrem hohe Druckgeschwindigkeit. Beim Laserdrucken richtet sich ein fokussierter Laserstrahl auf eine lichtempfindliche Flüssigkeit. Im Brennpunkt legt das Laserlicht in speziellen Molekülen gleichsam einen Schalter um, der eine chemische Reaktion auslöst. Sie führt zu einer lokalen Verfestigung des Materials. Durch Verschieben des Brennpunkts können beliebige Mikro- und Nanostrukturen hergestellt werden. Die chemische Reaktion wird dabei durch die sogenannte Zwei-Photonen-Absorption bewirkt, das heißt zwei Lichtteilchen (Photonen) regen das Molekül gleichzeitig an, was die gewünschte chemische Veränderung bewirkt. Diese gleichzeitige Anregung ist jedoch äußerst selten, weswegen komplexe gepulste Lasersysteme eingesetzt werden müssen, was wiederum größere Dimensionen beim Laserdrucker zur Folge hat.

Kompaktere 3-D-Drucker durch Zwei-Stufen-Verfahren

Kompaktere, kleinere Drucker sind dagegen mit dem sogenannten Zwei-Stufen-Verfahren möglich. Dabei versetzt das erste Photon das Molekül in einen Zwischenzustand. In der zweiten Stufe bringt ein zweites Photon das Molekül aus dem Zwischenzustand in den gewünschten Endzustand – und startet die chemische Reaktion. Der Vorteil: Dies muss nicht wie bei der Zwei-Photonen-Absorption gleichzeitig geschehen. „Daher gelingt der Prozess mit kompakten und leistungsarmen Dauerstrich-Laserdioden“, erklärt Vincent Hahn, Erstautor der Publikation, vom Institut für Angewandte Physik (APH) des KIT. Die hierfür erforderlichen Laserleistungen liegen sogar deutlich unter denen von handelsüblichen Laserpointern. Für dieses Druckverfahren müssen jedoch spezifische Fotolacke verwendet werden. „Die Entwicklung dieser Fotolacke hat einige Jahre gedauert und war auch nur durch die Zusammenarbeit mit Chemikerinnen und Chemikern möglich“, erläutert Professor Martin Wegener vom APH.

Nicht nur einfacher, sondern sogar besser

„In der Publikation zeigen wir, dass die Idee funktioniert, und dies sogar besser als bei der bisher verwendeten Zwei-Photonen-Absorption“, so Hahn. Der Vorteil in der Anwendung liegt für Wegener auf der Hand: „Es macht schon einen erheblichen Unterschied, ob man einen kistengroßen Femtosekunden-Laser für einige Zehntausend Euro braucht oder einen stecknadelkopfgroßen Halbleiter-Laser für weniger als zehn Euro. Jetzt gilt es, die anderen Komponenten des 3-D-Laser-Nanodruckers auch zu miniaturisieren. Dabei scheint mir ein schuhschachtelgroßes Gerät in den nächsten Jahren durchaus realistisch. Das wäre dann sogar kleiner als der Laserdrucker auf meinem Schreibtisch am KIT.“ So können 3-D-Laser-Nanodrucker plötzlich für viele Gruppen erschwinglich werden. Fachleute sprechen bereits von der Demokratisierung der 3-D-Drucktechnologie.

Neben den Forschern des KIT waren an der Publikation auch Wissenschaftlerinnen und Wissenschaftler der Universität Heidelberg beteiligt. Die Veröffentlichung entstand im Rahmen des gemeinsamen Exzellenzclusters „3D Matter Made to Order“ von KIT und Universität Heidelberg.

Fakten, Hintergründe, Dossiers
  • Mikrostrukturen
Mehr über KIT
  • News

    Simultankonzept beschleunigt Elektrodenherstellung

    Ein innovatives Konzept für die simultane Beschichtung und Trocknung zweilagiger Elektroden haben Forscher am Karlsruher Institut für Technologie (KIT) entwickelt und erfolgreich angewendet. Dadurch gelingt es, Trocknungszeiten auf unter 20 Sekunden zu verkürzen, was gegenüber dem derzeitig ... mehr

    BASF und KIT erforschen gemeinsam in einem öffentlich geförderten Projekt die Möglichkeiten von mehrschichtigen Anoden für Lithium-Ionen-Batterien

    Elektromobilität ist weltweit als entscheidender Faktor anerkannt, um Klimaneutralität zu erreichen. Leistungsstarke Lithium-Ionen-Batterien für Elektrofahrzeuge spielen hierbei eine Schlüsselrolle. BASF ist ein führender Akteur auf dem Markt für Batteriematerialien mit Fokus auf hochleistu ... mehr

    Innovativer Sensor spürt Moleküle gezielt und genau auf

    Einen neuartigen Sensor für Gasmoleküle haben Forschende am Karlsruher Institut für Technologie (KIT) und an der Technischen Universität Darmstadt entwickelt. Dazu haben sie einen Graphen-Transistor mit einer maßgeschneiderten metallorganischen Beschichtung kombiniert. Der innovative Sensor ... mehr

  • Videos

    Bioliq: Energiegewinnung aus Reststoffen – komplette Prozesskette läuft

    Die bioliq®-Pilotanlage am Karlsruher Institut für Technologie (KIT) läuft erfolgreich über die gesamte Prozesskette. Alle Stufen des Verfahrens sind nun miteinander verbunden: Schnellpyrolyse, Hochdruck-Flugstromvergasung, Heißgasreinigung und Synthese. Durch bioliq® wird Restbiomasse in u ... mehr

    Sicherheit von Lithium-Ionen-Batterien erhöhen

    Lithium-Batterien sollten bei Transport, Montage und im Betrieb wirklich sicher sein. KIT-Wissenschaftler erklären, welche Faktoren dazu beitragen, die Sicherheit von Lithium-Ionen-Batterien zu erhöhen. mehr

    Kleben wie ein Gecko: selbstreinigend und haftsicher

    Geckos haben Klebestreifen eines voraus: Selbst nach wiederholtem Kontakt mit Schmutz und Staub kleben ihre Füße noch auf glatten Flächen einwandfrei. Forscher des KIT und der Carnegie Mellon Universität in Pittsburgh haben nun den ersten Klebstreifen entwickelt, der nicht nur genauso hafts ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

Mehr über Ruprecht-Karls-Universität Heidelberg
  • News

    Silizium mit zweidimensionaler Struktur

    Das Halbmetall Silizium tritt in seiner natürlichen Form mit vier Bindungen zu anderen Elementen auf und hat in seiner dreidimensionalen Struktur die Form eines Tetraeders. Ein zweidimensionales Pendant – geometrisch gesehen ein Quadrat – zu synthetisieren und zu charakterisieren, schien la ... mehr

    Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen

    Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere Herausforderung dar, die Art und Anzahl der Defekte zu kontrollieren. Für Kohlenstoffnanoröh ... mehr

    Zwei, sechs, viele

    Phasenübergänge beschreiben dramatische Veränderungen der Eigenschaften eines makroskopischen Systems – zum Beispiel den Wechsel von flüssig zu gasförmig. Ausgehend von einzelnen, ultrakalten Atomen ist es Physikern der Universität Heidelberg in Experimenten gelungen, bei zunehmender Teilch ... mehr

  • Videos

    Campus-TV: Was wiegt ein Neutrino?

    Die Masse des Elementarteilchens Neutrino zu bestimmen, gehört zu den Hauptzielen einer neuen Forschergruppe, die mit Förderung der Deutschen Forschungsgemeinschaft (DFG) an der Universität Heidelberg eingerichtet wird. Für die Forschungsarbeiten, die im April 2015 begonnen haben, stellt di ... mehr

    Campus-TV: Liefert Kernfusion die Energie der Zukunft?

    Seit mehr als fünfzig Jahren wird daran geforscht, die Energie der Sonne auch auf der Erde sinnvoll zu nutzen. Am neuen Forschungskraftwerk Wendelstein 7X wurde bereits ein dafür nötiges Plasma erzeugt. mehr