18.10.2022 - Karlsruher Institut für Technologie (KIT)

Mit vereinten Kräften: Blitzschnelles 3D-Mikrodrucken mit zwei Lasern

Mikrometergroße Strukturen in nur einem Wimpernschlag

Objekte aus Kunststoff präzise, schnell und kostengünstig zu drucken, ist das Ziel vieler 3D-Druckverfahren. Geschwindigkeit und hohe Auflösung sind jedoch nach wie vor eine technologische Herausforderung. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT), der Universität Heidelberg und der Queensland University of Technology (QUT) ist diesem Ziel ein großes Stück nähergekommen. Es entwickelte ein Laserdruckverfahren, mit dem mikrometergroße Teile innerhalb eines Wimpernschlags gedruckt werden können. Die Arbeit veröffentlichte das internationale Team in Nature Photonics.

Der 3D-Druck im Stereolithographie-Verfahren ist derzeit eines der beliebtesten additiven Fertigungsverfahren für Kunststoffe, sowohl für private als auch für industrielle Anwendungen. Bei der Stereolithografie werden die Schichten eines 3D-Objekts nacheinander in einen mit Harz gefüllten Behälter projiziert. Das Harz wird durch UV-Licht gehärtet. Bisherige Stereolithografie-Verfahren sind jedoch langsam und haben eine zu geringe Auflösung. Der von den Forschenden des KIT eingesetzte 3D-Lichtblattdruck (engl. Light-Sheet 3D Printing) ist eine schnelle und hochauflösende Alternative.

3D-Druck mit zwei Farben in zwei Stufen

Beim „Light-Sheet-3D-Druck“ wird blaues Licht in einen Behälter projiziert, der mit einem flüssigen Harz gefüllt ist. Durch das blaue Licht wird das Harz voraktiviert. In einer zweiten Stufe liefert ein roter Laserstrahl die zusätzliche Energie, die zum Aushärten des Harzes erforderlich ist. Schnell drucken lassen sich aber im 3D-Druck nur Harze, die rasch aus dem voraktivierten Zustand in ihren ursprünglichen Zustand zurückkehren. Erst dann kann die nächste Schicht gedruckt werden. Die Rückkehrzeit diktiert folglich die Wartezeit zwischen zwei aufeinander folgenden Schichten und damit die Druckgeschwindigkeit. „Bei dem Harz, das wir verwendet haben, betrug die Rückkehrzeit weniger als 100 Mikrosekunden, was hohe Druckgeschwindigkeiten ermöglicht“, so Erstautor Vincent Hahn vom Institut für Angewandte Physik (APH) des KIT.

Mikrometergroße Strukturen in nur einem Wimpernschlag

Um die Vorteile dieses neuen Harzes zu nutzen, haben die Forschenden einen speziellen 3D-Drucker gebaut. In diesem Drucker werden blaue Laserdioden verwendet, um Bilder mithilfe eines hochauflösenden Displays mit hoher Bildfrequenz in das flüssige Harz zu projizieren. Der rote Laser wird zu einem dünnen „Lichtblatt“-Strahl geformt und kreuzt den blauen Strahl senkrecht im Harz. Mit dieser Anordnung konnte das Team mikrometergroße 3D-Teile in wenigen hundert Millisekunden, also in einem Wimpernschlag, drucken. Dabei soll es jedoch nicht bleiben: „Mit empfindlicheren Harzen könnten wir sogar LEDs statt Laser in unserem 3D-Drucker einsetzen“, sagt Professor Martin Wegener vom APH. „Letztlich wollen wir zentimetergroße 3D-Strukturen drucken und dabei die Auflösung im Mikrometerbereich und die hohe Druckgeschwindigkeit beibehalten. “

Fakten, Hintergründe, Dossiers
  • 3D-Druck
  • Laserdrucker
  • Stereolithografie
Mehr über KIT
  • News

    Blinde Flecken bei der Überwachung von Plastikmüll

    Ob im Trinkwasser, in der Nahrung oder sogar in der Luft: Plastik ist ein globales Problem – und das ganze Ausmaß der Verschmutzung ist möglicherweise noch gar nicht bekannt. Forschende des Karlsruher Instituts für Technologie (KIT) haben gemeinsam mit Partnern aus den Niederlanden und Aust ... mehr

    Nachhaltiges Kerosin: 40 Mio. Euro-Forschungsprojekt CARE-O-SENE wird gefördert

    Das internationale Forschungsprojekt CARE-O-SENE (Catalyst Research for Sustainable Kerosene) hat vom Bundesministerium für Bildung und Forschung (BMBF) Förderbescheide in Höhe von 30 Mio. Euro erhalten. Zusätzlich steuern die industriellen Konsortiumspartner 10 Millionen Euro bei. Ziel des ... mehr

    Auf dem Weg zum CO₂-neutralen Fliegen

    Mit dem Flugzeug reisen – und trotzdem kein zusätzliches CO2 ausstoßen. Möglich wäre das mit synthetischen Treibstoffen, die mittels erneuerbarer Energien aus Wasser und Umgebungsluft gewonnen werden. Allerdings müssten enorme Mengen produziert werden. Ein neues Herstellungsverfahren aus de ... mehr

  • Forschungsinstitute

    Institut für Funktionelle Grenzflächen (IFG) am Karlsruher Institut für Technologie (KIT)

    Forschungsgegenstand des Instituts für Funktionelle Grenzflächen (IFG) ist das Studium molekularer Interaktionen an fest/gas und fest/flüssig Grenzflächen. Aus der Untersuchung von Grundlagenprozessen auf der Nano-Ebene gewonnene Erkenntnisse werden konsequent auf die Makro-Ebene technische ... mehr

    Karlsruher Institut für Technologie (KIT)

    Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

Mehr über Ruprecht-Karls-Universität Heidelberg
  • News

    3D-Druck mit Ultraschall

    Wissenschaftler*innen der Forschungsgruppe „Micro, Nano and Molecular Systems“ am Max-Planck-Institut für medizinische Forschung und des Institute for Molecular Systems Engineering and Advanced Materials der Universität Heidelberg haben eine neue Technologie entwickelt, um Materie in 3D zu ... mehr

    Mikroskopisch kleine Kraken aus dem 3D-Drucker

    Auf den ersten Blick nur possierliche Tierchen: Die mikroskopisch kleinen Geckos und Kraken, die in den Laboren des Molecular Engineering der Universität Heidelberg mittels 3D-Laserdruck hergestellt wurden, könnten jedoch in Forschungsgebieten wie der Mikrorobotik oder Biomedizin neue Mögli ... mehr

    Poröse Kristalle binden fluorhaltige Treibhausgase

    Die Emission von Treibhausgasen trägt maßgeblich zur globalen Erderwärmung bei. Doch nicht nur Kohlendioxid (CO2), sondern auch fluorhaltige Gase – darunter sogenannte per- oder polyfluorierte Kohlenwasserstoffe, kurz PFC – haben einen signifikanten Anteil an dieser Entwicklung. Wissenschaf ... mehr

Mehr über QUT
  • News

    Forscher entwickeln neue, schneller aufladbare Wasserstoff-Brennstoffzelle

    Forscher der University of Technology Sydney (UTS) und der Queensland University of Technology (QUT) haben eine neue Methode entwickelt, um die Ladezeiten von Festkörper-Wasserstoffbrennstoffzellen zu verbessern. Wasserstoff gewinnt als effiziente Möglichkeit zur Speicherung von "grüner Ene ... mehr

    Grünes Licht für eine neue Generation dynamischer Materialien

    Die Entwicklung von synthetischen Materialien, die so dynamisch sind wie die der Natur, sich reversibel ändernde Eigenschaften aufweisen und in der Herstellung, im Recycling und anderen Anwendungen eingesetzt werden können, ist ein starker Fokus für Wissenschaftler. In einer Weltneuheit hab ... mehr

    Neuer Katalysator produziert billigen Wasserstoff

    Das Potenzial für die chemische Speicherung erneuerbarer Energien in Form von Wasserstoff wird weltweit untersucht."Die australische Regierung ist daran interessiert, eine Wasserstoff-Exportindustrie zu entwickeln, um unsere reichlich vorhandenen erneuerbaren Energien zu exportieren", sagte ... mehr