02.12.2021 - Technische Universität Wien

Detektivarbeit an der Brennstoffzelle

Forscher untersuchen neue Materialien, mit denen sich die Betriebstemperatur von Brennstoffzellen herabsetzen lässt: Dazu wenden sie eine innovative Methode an

Festoxidbrennstoffzellen bestehen aus drei wichtigen Teilen: einer Anode, einer Kathode und einem Elektrolyten. Während Sauerstoff an der Kathode in die Festoxidbrennstoffzelle eingebaut wird, wird dieser im Elektrolyt zur Anode transportiert, wo der Sauerstoff mit Wasserstoff zu Wasser reagiert. Die Brennstoffzelle wandelt die dabei freiwerdende Energie in elektrischen Strom um. Daher werden Brennstoffzellen zunehmend zur Stromerzeugung genutzt und finden Einsatz in der stationären Energieversorgung sowie der Automobilindustrie.

Um die Betriebstemperatur von Festoxidbrennstoffzellen von derzeit etwa 800 °C zu senken, forschen Wissenschaftler der TU Wien an alternativen Materialien, die sich als Kathode eignen. Die Ergebnisse ihrer Materialanalyse veröffentlichten Markus Kubicek und sein Team jüngst in der Fachzeitschrift „Journal of Materials Chemistry A“.

Betriebstemperatur senken

Festoxidbrennstoffzellen werden bereits seit den 1980er Jahren gebaut. Nun versuchen Forschende neue Brennstoffzellen zu entwickeln, die noch langzeitstabiler und kostengünstiger herzustellen sind. Dazu ist es notwendig, die Betriebstemperatur auf etwa 450 bis 600 Grad Celsius zu senken. Für den Betrieb der Festoxidbrennstoffzelle bei niedrigeren Temperaturen stellt vor allem der Sauerstoffeinbau an der Kathode einen Flaschenhals dar, denn die chemische Reaktion läuft nun langsamer ab. Daher sind Forschende weltweit auf der Suche nach Wegen, um neue Elektrodenmaterialien zu entwickeln, die auch bei niedrigeren Temperaturen Sauerstoff ausreichend schnell einbauen können.

Einbau von Sauerstoffionen

Wissenschaftler des Forschungsbereichs „Technische Elektrochemie“ arbeiten bereits seit Jahren an sogenannten gemischtleitenden Materialien (engl. MIECs). Oxide dieser Materialklasse sind besonders gut für Brennstoffzellenkathoden geeignet, da sie bei höheren Temperaturen sowohl Sauerstoffionen als auch Elektronen leiten können. Dies funktioniert vor allem über Defekte, also über minimale Abweichungen vom idealen Kristallgitter, die absichtlich in das Material eingebracht werden.

„Die wichtigsten Defekte im Inneren dieser Materialien sind Sauerstoffleerstellen sowie Elektronen und Löcher. Um diese Materialien zielgerichtet optimieren zu können, ist ein besseres Verständnis der Rolle dieser Defekte für die Sauerstoffeinbaureaktion von höchster Bedeutung“, erklärt Markus Kubicek, Leiter des FWF-Projekts „In-Situ Charakterisierung oxidischer Dünnfilme beim Wachstum“. Genau das ist den Forschenden jetzt gelungen.

Weltweit einzigartige Messmethode

Um die Geschwindigkeit des Sauerstoffeinbaues zu messen, bedienen sich die Forschenden weltweit einzigartiger „in situ PLD“-Messungen. Die Elektrodenmaterialen werden in einer Vakuumkammer mit einem Laser hergestellt und direkt mittels Impedanzspektroskopie untersucht. „Da bereits kleinste Verunreinigungen zu einer starken Verfälschung der Messergebnisse führen können, brauchten wir eine Messmethode, mit der wir tatsächlich saubere Elektrodenoberflächen untersuchen können. Das ist uns hier erstmals gelungen“, erklärt Christoph Riedl aus der Forschungsgruppe für Festkörperionik. „Nur durch unsere hier entwickelte in-situ-Methode konnten wir theoretische Simulation und reale Messergebnisse perfekt miteinander vereinen“, ergänzt er.

Verschiedene Materialen, gleicher Einbaumechanismus

Die Forschenden untersuchten mit ihrer Messmethode die Sauerstoffaustauschreaktion an der Oberfläche von fünf vielversprechenden Materialien. „Ein Highlight unserer Messungen ist, dass wir erstmals beobachten konnten, dass der Sauerstoffaustausch auf sehr unterschiedlichen Materialien dem gleichen Mechanismus zu folgen scheint“, schildert Matthäus Siebenhofer. „Ein entscheidender Faktor ist dabei die Verfügbarkeit von Sauerstoffleerstellen an der Oberfläche.“

Jürgen Fleig, Leiter der Arbeitsgruppe „Festkörperionik“, resümiert: „In dieser Studie konnten wir verschiedene Forschungsergebnisse und experimentelle Entwicklungen der letzten Jahre zu einem großen Ganzen zusammenfügen und so die wichtigste Reaktion im Bereich der Festoxidbrennstoffzellen deutlich besser beschreiben und verstehen.“

Fakten, Hintergründe, Dossiers
Mehr über TU Wien
  • News

    Neue Quantenmaterialien am Computer entworfen

    Eine neues Designprinzip kann nun die Eigenschaften von bisher kaum erforschbaren Quantenmaterialien vorhersagen: So wurde erstmals mit dem Computer ein hochkorreliertes topologisches Halbmetall entdeckt. Wie findet man neuartige Materialien mit ganz bestimmten Eigenschaften – zum Beispiel ... mehr

    Recycling für Treibhausgase

    Aus CO2 und Methan kann man wertvolle Synthesegase herstellen – mit Katalysatoren, die bisher allerdings rasch an Wirkung verloren. An der TU Wien entwickelte man nun stabilere Alternativen. Überall dort, wo man die Entstehung schädlicher Treibhausgase nicht verhindern kann, sollte man sie ... mehr

    Chemielabor auf einem Chip analysiert Flüssigkeiten in Echtzeit

    An der TU Wien wurde ein Infrarot-Sensor entwickelt, der in Sekundenbruchteilen Inhaltsstoffe von Flüssigkeiten detektiert. Was machen die Moleküle gerade im Reagenzglas? In der chemischen Technologie ist es oft wichtig, exakt zu messen, wie sich die Konzentration bestimmter Substanzen verä ... mehr

  • Videos

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr