20.01.2022 - Ruhr-Universität Bochum

Unerwartete Energiespeicherfähigkeit, wo Wasser auf Metall trifft

Kapazitiv gespeicherte Ladung an Platingrenzflächen kann deutlich höher sein als bisher angenommen

Mit einer neuen Methode kann die elektrische Umladung von Grenzschichten zwischen sehr kleinen, metallischen Partikeln und wässrigen Lösungen gemessen und auf molekularer Ebene verstanden werden.

Forschende des Exzellenzclusters RESOLV an der Ruhr-Universität Bochum (RUB) haben mit Strom- und Spannungsmessungen an einzelnen Nanopartikeln ermittelt, dass die kapazitiv gespeicherte Ladung an Platingrenzflächen deutlich höher sein kann als bisher angenommen. Dies führen sie auf eine spezielle Anordnung und Bindung von Wassermolekülen zurück. Dazu kooperierte das internationale Team um Prof. Dr. Kristina Tschulik, deren Ideen 2020 mit einer ERC-Starting-Grant-Förderung des Europäischen Forschungsrates ausgezeichnet wurden, mit Partnern aus Frankreich und Israel. Die Ergebnisse beschreiben die Autoren in der Fachzeitschrift „Angewandte Chemie“ – online, veröffentlicht am 19. Dezember 2021.

Obwohl Grenzflächen zwischen Metallen und Wasser die lokalen Bereiche sind, wo entscheidende Vorgänge von Energietechnologien wie Wasserspaltung ablaufen, ist bisher nur wenig über ihren Aufbau und Veränderungen während solcher Prozesse bekannt. Die wissenschaftliche Beschreibung solcher Grenzflächen wird seit über 100 Jahren vom Modell der sogenannten elektrochemischen Doppelschicht geprägt. Es besagt, dass sich Ladungsträger einer wässrigen Lösung vermehrt im Grenzbereich zum Metall anordnen, um überschüssige elektrische Ladungen auf der Metallseite auszugleichen. Dabei werden die entgegengesetzten Ladungen durch Wassermoleküle getrennt. Ähnlich zu einem technischen Plattenkondensator kann durch diese nanoskopische Ladungstrennung in der Grenzfläche Energie gespeichert und später wieder abgerufen werden. Vorgänge, bei denen sich der molekulare Aufbau der elektrochemischen Doppelschicht verändert, sind für viele grüne Technologien, wie zum Beispiel Superkondensatoren und Brennstoffzellen, relevant.

Tausendmal kleiner als der Durchmesser eines Haars

Für solche technischen Anwendungen werden verstärkt Nanopartikel untersucht, welche tausendmal kleiner sind als der Durchmesser eines menschlichen Haars. Wegen ihres vorteilhaften Verhältnisses von prozessrelevanter Oberfläche zu Volumen bieten sie hierfür besonders gute Voraussetzungen. „Um der Kapazität und den Umordnungsprozessen in der elektrochemischen Doppelschicht an Platin- und Goldnanopartikeln auf die Spur zu kommen, war es entscheidend, eine Methode zu entwickeln, mit der präzise Umladungsströme an individuellen Nanopartikeln in Lösung gemessen werden können“, berichtet Kristina Tschulik. Sonst wäre es nicht möglich, Effekte, die mit der Doppelschicht zusammenhängen, von Effekten zu unterscheiden, die durch das Zusammenwirken von Nanopartikeln entstehen, wie sie zu Milliarden auf einer herkömmlichen Elektrode vorliegen.

Die vom Deutschen Akademischen Auslandsdienst geförderte iranische Wissenschaftlerin Dr. Mahnaz Azimzadeh Sani verwendete sogenannte kolloidale Nanopartikeldispersionen. Dort liegen Nanopartikel voneinander getrennt und fein verteilt in wässriger Lösung vor und schlagen zufällig hin und wieder auf einer unter Spannung stehenden Mikroelektrode ein. Mithilfe von computergestützten Molekulardynamiksimulationen, an denen Forschende der RUB sowie der Université Paris-Saclay und Sorbonne Université in Paris arbeiteten, konnten Gemeinsamkeiten und Unterschiede spannungsabhängig gemessener kapazitiver Ströme verschiedener Arten von Nanopartikeldispersionen interpretiert werden. Die unerwartet hohen Kapazitäten werden auf gelöste geladene Teilchen zurückgeführt, die sich vermehrt in Zwischenräumen von einer kompakten an Platin (und schwächer an Gold) gebundenen Wasserschicht und einer angrenzenden Wasserschicht anderer Anordnung ansammeln. „Weiterhin werden Wassermoleküle von der Metalloberfläche abgelöst, wenn negativere Spannung angelegt wird“ erklärt Dr. Julia Linnemann, Teamleiterin an Tschuliks Lehrstuhl. In Zukunft wollen die RUB-Wissenschaftlerinnen herausfinden, ob und warum der Doppelschichtaufbau an großen, aus vielen Nanopartikeln bestehenden Elektroden anders ist, um die gewonnen Erkenntnisse technisch nutzbar zu machen.

Fakten, Hintergründe, Dossiers
  • Energietechnik
  • Energiespeicherung
  • Wasserspaltung
  • Gold-Nanopartikel
Mehr über RUB
  • News

    Kupfer wirkt effektiv gegen Sars-Cov-2 auf Oberflächen – Silber nicht

    Kupfer und Silber sind für ihre antibakteriellen Eigenschaften bekannt. Bochumer Forschende haben untersucht, was sie gegen Viren ausrichten. Silber- und Kupferionen machen vielen Krankheitserregern den Garaus. Daher werden zum Beispiel Implantate oder medizinische Instrumente mit diesen Me ... mehr

    Ein Sieb für Moleküle

    Lange haben Forschende versucht, das aus Kohlenstoff bestehende Graphen als eine Art Sieb zu nutzen. Aber es hat keine Poren. Nun hat ein Team ein Alternativmaterial gefunden, das die Löcher von alleine mitbringt. Forschenden aus Bielefeld, Bochum und Yale ist es gelungen, eine Schicht aus ... mehr

    Molekulare Maschine im Nanocontainer

    Ein durch Licht fernsteuerbares molekulares Gyroskop haben die theoretischen Chemiker Dr. Chandan Das und Prof. Dr. Lars Schäfer von der Ruhr-Universität Bochum (RUB) gemeinsam mit einem internationalen Team am Institute for Basic Science in Südkorea konstruiert. Darüber hinaus gelang es ih ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr