04.08.2022 - Technische Universität Wien

Ein Molekül aus Licht und Materie

Mit Licht kann man Atome gezielt dazu bringen, einander gegenseitig anzuziehen

Ein ganz besonderer Bindungszustand zwischen Atomen konnte nun erstmals im Labor erzeugt werden: Mit einem Laserstrahl lassen sich Atome polarisieren, sodass sie auf einer Seite positiv, auf der anderen Seite negativ geladen sind. Dadurch ziehen sie einander an und bilden einen ganz speziellen Bindungszustand – viel schwächer als die Bindung zwischen zwei Atomen in einem gewöhnlichen Molekül, aber dennoch messbar. Die Anziehungskraft geht von den polarisierten Atomen selbst aus, aber erst der Laserstrahl verleiht ihnen die Möglichkeit dazu – in gewissem Sinn handelt es sich um ein „Molekül“ aus Licht und Materie.

Theoretisch vorhergesagt wurde dieser Effekt schon lange, nun gelang es Wissenschaftler_innen des Vienna Center for Quantum Science and Technology (VCQ) der TU Wien in Zusammenarbeit mit der Universität Innsbruck, diese exotische Atombindung erstmals zu messen. Nützlich ist diese Wechselwirkung für die Manipulation extrem kalter Atome, auch für die Bildung von Molekülen im Weltraum könnte der Effekt eine Rolle spielen. Die Ergebnisse wurden nun im Fachjournal „Physical Review X“ publiziert.

Positive und negative Ladung

In einem elektrisch neutralen Atom wird ein positiv geladener Atomkern von negativ geladenen Elektronen umgeben, die sich wolkenartig in der Nähe des Atomkerns befinden. „Wenn man nun ein äußeres elektrisches Feld einschaltet, dann verschiebt sich diese Ladungsverteilung ein bisschen“, erklärt Prof. Philipp Haslinger, dessen Forschung am Atominstitut der TU Wien durch das FWF START-Programm unterstützt wird. „Die positive Ladung wird geringfügig in die eine Richtung, die negative Ladung geringfügig in die andere Richtung verschoben, das Atom hat plötzlich eine positive und eine negative Seite, es ist polarisiert.“

Licht ist nichts anderes als ein elektromagnetisches Feld, das sich sehr rasch ändert, deshalb kann man auch mit Laserlicht diesen Polarisations-Effekt hervorrufen. Wenn sich mehrere Atome nebeneinander befinden, polarisiert sie das Laserlicht alle genau auf dieselbe Weise – links positiv und rechts negativ, oder umgekehrt. In beiden Fällen wenden zwei benachbarte Atome einander unterschiedliche Ladungen zu, eine Anziehungskraft entsteht.

Experimente mit der Atomfalle

„Es handelt sich hier um eine sehr schwache Anziehungskraft, daher muss man sehr sorgfältig experimentieren, um sie messen zu können“, sagt Mira Maiwöger von der TU Wien, die Erstautorin der aktuellen Publikation. „Wenn die Atome viel Energie haben und sich schnell bewegen, ist es mit der Anziehungskraft sofort wieder vorbei. Man verwendete deshalb eine Wolke aus ultrakalten Atomen.“

Die Atome werden zuerst in einer magnetischen Falle mithilfe eines Atomchips, gefangen und gekühlt, eine Technik, die in Wien am Atominstitut in der Gruppe von Prof. Jörg Schmiedmayer entwickelt wurde. Dann schaltet man die Falle aus und lässt die Atome nach unten fallen. Die Atomwolke ist mit weniger als einem millionstel Kelvin zwar 'ultrakalt', hat aber genug Energie um sich während des Fallens noch auszudehnen. Wenn man allerdings in dieser Phase mit einem Laserstrahl die Atome polarisiert und dadurch eine Anziehungskraft zwischen ihnen erzeugt, dann wird diese Ausdehnung der Atomwolke gebremst – und so kann man die Anziehungskraft messen.

Quantenlabor und Weltraum

„Einzelne Atome mit Laserstrahlen zu polarisieren ist grundsätzlich nichts Neues“, sagt Matthias Sonnleitner, der die theoretische Grundlage für das Experiment gelegt hat. „Das Entscheidende an unserem Experiment ist allerdings, dass es uns erstmals gelungen ist, mehrere Atome auf kontrollierte Weise gemeinsam so zu polarisieren, dass dadurch eine messbare Anziehungskraft zwischen ihnen entsteht.“

Diese Anziehungskraft ist ein nützliches Werkzeug um ultrakalte Atome noch besser zu kontrollieren als bisher. Aber auch für die Astrophysik könnte sie wichtig sein: „In den Weiten des Weltraums können kleine Kräfte eine große Rolle spielen“, sagt Philipp Haslinger. „Hier konnten wir zum ersten Mal zeigen, dass elektromagnetische Strahlung eine Kraft zwischen Atomen erzeugen kann, das kann vielleicht helfen, neues Licht auf bisher noch nicht erklärbare astrophysikalische Szenarien zu werfen.”

Fakten, Hintergründe, Dossiers
  • Polarisation
  • Atombindung
  • Quantenchemie
Mehr über TU Wien
  • News

    Eine Quantenwelle in zwei Kristallen

    Die Geschichte der Neutroneninterferometrie begann 1974 in Wien. Helmut Rauch, langjähriger Professor am Atominstitut der TU Wien, stellte aus einem Silizium-Kristall das erste Neutronen-Interferometer her und konnte am Wiener TRIGA-Reaktor die ersten Interferenzen mit Neutronen beobachten. ... mehr

    Ein Viertaktmotor für Atome

    Was man ein und wieder ausschaltet, ist normalerweise wieder im Ausgangszustand. Ein neues magnetisches Material muss dafür aber viermal geschaltet werden. Der Spin von Atomen bewegt sich dabei einmal im Kreis. Wenn man ein Bit im Speicher eines Computers umschaltet und dann wieder zurücksc ... mehr

    Thermoelektrika: Von Wärme zu Strom

    Forschende der TU Wien haben ein neues Konzept entwickelt, um Wärmeenergie effizienter in elektrische Energie umzuwandeln. Energieverluste können so minimiert werden. Bei der Umwandlung von Energie geht viel Wärme verloren. Schätzungen zufolge sogar mehr als 70%. In thermoelektrischen Mater ... mehr

  • Videos

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

Mehr über Universität Innsbruck
  • News

    Spiegel spürt winziges Teilchen auf

    Der Einsatz schwebender Nanoteilchen als Sensoren war bisher durch die Präzision der Positionsmessungen beschränkt. Nun haben Forscher*innen um Tracy Northup an der Universität Innsbruck eine neue Methode präsentiert, bei der für die Positionsbestimmung mittels optischer Interferometrie das ... mehr

    Quantensysteme und Bienenflug

    Mehr als zwei Billiarden verschiedene Zustände kann ein Quantensystem mit nur 51 geladenen Atomen einnehmen. Sein Verhalten zu berechnen, ist für einen Quantensimulator ein Kinderspiel. Doch nachzuprüfen, ob das Ergebnis stimmt, ist selbst mit aktuellen Supercomputern kaum noch zu schaffen. ... mehr

    Einblick in ein Graphen-Sandwich

    Ein Team um ERC-Preisträger Mathias Scheurer vom Institut für Theoretische Physik der Uni Innsbruck hat die Eigenschaften von drei gegeneinander verdrehten Graphenschichten detailliert untersucht und dabei wichtige Erkenntnisse gewonnen. Seit es vor rund 20 Jahren erstmals gelungen ist, ein ... mehr

  • Videos

    Physik: Quantensysteme kontrollieren

    Wie wird die Erde der Zukunft aussehen? Technologie wird zum Einsatz kommen, die uns Menschen ungeahnte Möglichkeiten geben wird. Einen wesentlichen Beitrag dazu liefert die Quantenphysik. In Innsbruck arbeiten Wissenschaftler heute schon an den Grundlagen der Welt von Übermorgen, am Instit ... mehr

    Chemie: Pollen mit flexibler Wirkung

    Wenn im Frühling die Bäume blühen, dann leiden Allergiker an Heuschnupfen. Jeder fünfte Mitteleuropäer ist beispielsweise auf Birkenpollen allergisch. Pollen sind mikroskopisch kleine, kugelige Gebilde. Sie sind unter anderem aus verschiedenen Eiweißbausteinen aufgebaut, und einige dieser P ... mehr

  • q&more Artikel

    Wissen statt Nichtwissen

    Biologie ist naturgemäß komplex und selbst die Ergebnisse einfachster biochemischer Experimente sind mit nicht zu vernachlässigendem experimentellen Rauschen behaftet. Biochemische Messungen sind jedoch das Rückgrat moderner Pharmaforschung. Wird die experimentelle Unsicherheit bei der Plan ... mehr

  • Autoren

    Prof. Dr. Christian Kramer

    Jg. 1980, studierte Molecular Sciences in Erlangen und Zürich. Er promovierte von 2007–2009 an der Universität Erlangen in enger Zusammenarbeit mit Boehringer-Ingelheim/Biberach über neue QSAR- und QSPR-Methoden zu statistischen Vorhersagen von physikochemischen und biochemischen Eigenschaf ... mehr