07.09.2022 - Forschungszentrum Jülich GmbH

Neue Regel für die Orbitalbildung bei chemischen Reaktionen entdeckt

Quietschbunt, wolkenförmig oder kugelrund – Elektronenorbitale zeigen, wo und wie sich Elektronen um Atomkerne und Moleküle bewegen. In der modernen Chemie und Physik werden sie für die quantenmechanische Beschreibung und Vorhersage chemischer Reaktionen eingesetzt. Nur wenn sich die Orbitale räumlich und energetisch nahe sind, lassen sie sich kombinieren – dies geschieht, wenn zwei Stoffe miteinander chemisch reagieren. Daneben gibt es aber noch eine weitere Voraussetzung, die erfüllt sein muss, wie Forschende des Forschungszentrums Jülich und der Universität Graz nun herausgefunden haben: Der Ablauf chemischer Reaktionen scheint zusätzlich von der Orbitalverteilung im Impulsraum abhängig zu sein. Die Ergebnisse wurden im Fachmagazin Nature Communications veröffentlicht.

Chemische Reaktionen sind letztlich nichts anderes als der Auf- und Abbau von Elektronenbindungen, die üblicherweise mithilfe von Orbitalen beschrieben werden können. Mittels der sogenannten Molekülorbitaltheorie lässt sich so vorhersagen, wie eine chemische Reaktion ablaufen wird. Die Chemiker Kenichi Fukui und Roald Hoffmann erhielten 1981 den Nobelpreis für die starke Vereinfachung des Verfahrens, das seitdem weite Verbreitung und Anwendung gefunden hat.

„Üblicherweise werden die Energie und der Ort der Elektronen analysiert. Mittels der von uns zu diesen Zwecken weiterentwickelten Methode der Photoemissionstomografie haben wir uns aber die Impulsverteilung der Orbitale angeschaut“, erläutert Dr. Serguei Soubatch. Gemeinsam mit seinen Kollegen am Jülicher Peter Grünberg Institut (PGI-3) und der Universität Graz in Österreich hat er in einer Reihe von Experimenten verschiedenartige Moleküle an Metalloberflächen angeheftet und die gemessenen Impulse im sogenannten Impulsraum abgebildet.

„Die Photoemission vieler verschiedener Moleküle auf Metallen, die wir messen, kann auch theoretisch vorhergesagt werden. Modellhaft wird dazu einfach ein freies Molekül verwendet, das nicht mit dem Metall wechselwirkt. Bei der Messung von Oligophenylen auf Kupfer stellten wir jedoch plötzlich fest, dass das experimentelle Ergebnis erheblich von den Vorhersagen abweicht. Bestimmte Teile des Impulsraums blieben unbesetzt“, so Soubatch. Diese Impulsbereiche stimmen mit sogenannten Bandlücken überein, die typischerweise in Edelmetallen auftreten. Und auch einer der beteiligten Stoffe, Kupfer, ist ein solches Edelmetall.

„Im Ergebnis zeigt sich hier ein Auswahlkriterium, das bislang unbekannt war: Orbitale, die sich bei einer chemischen Reaktion zu einem Hybridorbital verbinden, müssen nicht nur hinsichtlich Energie und räumlichen Ausdehnung übereinstimmen, sondern auch eine gleiche Impulsverteilung aufweisen“, erklärt Institutsdirektor Prof. Stefan Tautz.

Für die Arbeit haben die Forschenden Experimente am Elettra-Synchrotron im italienischen Triest durchgeführt. Ein internationales Konsortium unter der Leitung des Forschungszentrums Jülich betreibt dort an einer Beamline ein Photoemissionselektronenmikroskop für orbitaltomografische Messungen.

Die Untersuchungen wurden in Zusammenarbeit mit Prof. Michael. G. Ramsey und dem Theoretiker Prof. Peter Puschnig von der Universität Graz durchgeführt. Letzterer lieferte mit seinen quantenmechanischen Simulationen für das gesamte wechselwirkende System – Moleküle und Metalloberfläche – den Schlüssel zur Erklärung des neu gefundenen Auswahlkriteriums.

Fakten, Hintergründe, Dossiers
  • Elektronenorbitale
  • Elektronen
  • Atomkerne
  • Moleküle
  • chemische Reaktionen
  • Molekülorbital-Theorie
  • Photoemissionstomografie
Mehr über Forschungszentrum Jülich
  • News

    Neue Einblicke in das Wechselspiel topologischer Isolatoren

    Wolfram-di-Tellurid (WTe2) hat sich zuletzt als vielversprechendes Material zur Realisierung topologischer Zustände bewährt. Diese gelten aufgrund ihrer einzigartigen elektronischen Eigenschaften als Schlüssel für neuartige „spintronische“ Bauelemente und Quantencomputer der Zukunft. Physik ... mehr

    Synapsen als Vorbild: Festkörperspeicher in neuromorphen Schaltungen

    Sie sind um ein Vielfaches schneller als Flash-Speicher und benötigen deutlich weniger Energie: Memristive Speicherzellen könnten die Energieeffizienz neuromorpher Computer revolutionieren. In diesen Rechnern, die sich die Arbeitsweise des menschlichen Gehirns zum Vorbild nehmen, funktionie ... mehr

    Forscher erreichen Fusionsenergie-Rekord

    Den Forschern und Forscherinnen von EUROfusion ist es gelungen, einen Energiepuls in bisher unerreichter Höhe zu erzeugen. Bei dem Rekordversuch setzten die Fusionsreaktionen im Joint European Torus (JET) während eines fünf Sekunden dauernden Plasma-Pulses insgesamt 59 Megajoule Energie in ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Forschungsförderung im Auftrage der Bundesministerien für Bildung und Forschung (BMBF), Wirtschaft (BMWA), Umwelt (BMU) sowie verschiedener Bundesländer. mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr

Mehr über Karl-Franzens-Universität Graz
  • News

    Molekulare Telegraphie

    Die Idee, einen Ball zu werfen und zu fangen, ist allen vertraut – aber kann man das auch mit einzelnen Molekülen machen? Also sie gezielt von einem Ort an einen anderen und wieder zurück transferieren? Und wie schnell wären die Moleküle? Diesen Fragen ist eine Forschungsgruppe der Universi ... mehr

    Wie man Biosprit aus Hefezellen gewinnt

    Biologisch hergestellter Treibstoff ist einer der Hoffnungsträger einer künftigen Energiewende. Verbrennungsmotoren mit klimaneutral hergestelltem Diesel oder Benzin könnten neben E-Mobilität den Ausstieg aus fossilen Energieträgern unterstützen. Derzeit muss dieser „Biosprit“ aber aus hoch ... mehr

    Flexibel durch Fehler

    Elektronische Bauteile wie Schalter oder Transistoren, die aus einem einzigen Molekül bestehen, könnten in Zukunft die Technik revolutionieren. Die Grundlagen dafür erforscht die Arbeitsgruppe Single-Molecule Chemistry an der Universität Graz unter der Leitung von Leonhard Grill. Das Team h ... mehr

  • q&more Artikel

    Lipidomics – der neue Stern am „OMICS“-Himmel

    Vor allem technologische und analytische Fortschritte bringen die Forschung voran. Dies gilt im biomedizinischen Bereich insbesondere für das Gebiet der Lipidforschung, das jahrzehntelang durch das Fehlen geeigneter Analysemethoden zur Untersuchung der enormen Komplexität von Lipiden im men ... mehr

  • Autoren

    Prof. Dr. Sepp D. Kohlwein

    Sepp D. Kohlwein, Jahrgang 1954, studierte Technische Chemie an der Technischen Universität Graz und promovierte dort 1982 am Institut für Biochemie zum Dr. techn. Bis 2001 war dort als assoziierter Professor tätig. Nach mehreren Forschungsaufenthalten am Albert Einstein College of Medicine ... mehr