23.05.2023 - Max-Planck-Institut für Kohlenforschung

Forscher aus Mülheim gehen neuartigen Bismut-Komplexen auf den Grund

Chemiker vom MPI für Kohlenforschung publizieren verblüffende Ergebnisse in „Science"

Um die Vorteile von Elementen und ihren molekularen Verbindungen gezielt ausspielen zu können, müssen Chemikerinnen und Chemiker ein grundlegendes Verständnis für deren Eigenschaften entwickeln. Im Fall des Elements Bismut hat ein Team des Max-Planck-Instituts für Kohlenforschung nun einen wichtigen Schritt getan.

Die Chemikerinnen und Chemiker am Max-Planck-Institut für Kohlenforschung wollen durch das rationale Design neuartiger Katalysatoren dazu beitragen, die Prozesse in der Chemieindustrie effizienter und nachhaltiger zu gestalten. Um die Vorteile von Elementen wie beispielsweise Bismut und ihren molekularen Verbindungen gezielt spielen zu können, ist ein grundlegendes Verständnis ihrer Eigenschaften notwendig. Und dass es noch einige bislang „weiße Flecken“ im atomaren Kosmos gibt, welche es zu erschließen gilt, hat nun ein Team um Josep Cornellà und Frank Neese, Gruppenleiter und Direktor am Max-Planck-Institut für Kohlenforschung, gezeigt. Ihre Arbeit zu einer verblüffenden Eigenschaft von bestimmten Bismut-Komplexen haben die Forscher jetzt unter dem Titel „Synthesis and isolation of a triplet bismuthinidene with a quenched magnetic response“ in der Fachzeitschrift „Science“ publiziert. 

Besonderes Interesse für ein besonderes Element

Warum Bismut? Das Team von Forschungsgruppenleiter Josep Cornellà interessiert sich schon eine ganze Weile für dieses besondere Metall. „Bismut kann – im Vergleich zu anderen Metallen – einige Vorteile bieten. So ist es leichter verfügbar und weniger giftig als andere Elemente. Darüber hinaus könnten besondere Eigenschaften von Bismut, die andere „klassische“ Katalyse-Kandidaten nicht aufweisen, für künftige Reaktionsdesigns eine Rolle spielen“, erläutert Cornellà. 

Was macht das Mülheimer Bismut-Molekül nun so ungewöhnlich? Atome bestehen aus dem Atomkern sowie aus einer Atomhülle, welche aus Elektronen besteht. Bei der Entstehung von Molekülen bilden sich chemische Bindungen zwischen den einzelnen Atomen, welche aus Paaren von Elektronen. Für Chemiker sind Moleküle immer dann besonders interessant, wenn diese Elektronpaar Bildung nicht „vollständig“ ist, denn dann tendieren die Moleküle dazu sehr reaktiv zu sein und mit anderen Molekülen in Interaktion zu treten.

„Normalerweise sind Moleküle mit ungepaarten Elektronen magnetisch“, erklärt Frank Neese. Doch nun haben die Kohlenforscher ein Bismut-haltiges Molekül entwickelt, welches über ungepaarte Elektronen verfügt, und seltsamerweise dennoch keinerlei Magnetismus zeigt. Des Rätsels Lösung hat unter anderem mit der besonderen Stellung von Bismut im Periodensystem der Elemente zu tun. So ist Bismut das schwerste der stabilen Elemente – alle nachfolgenden Elemente sind radioaktiv.

Quantenchemie-Programm aus Mülheim

Aufgrund des besonders schweren Atomkerns legen die Elektronen ein besonderes Verhalten an den Tag, welches nur mit Hilfe von Einsteins Relativitätstheorie verstanden werden kann. Ebendiese Eigenschaften führen zu dem zunächst verblüffenden experimentellen Befund. „Unser Molekül ist nicht wirklich ‚unmagnetisch‘“, erklären die Forscher, „allerdings gibt es auf der Erde kein Magnetfeld welches stark genug wäre, um den Magnetismus in unserem System zu detektieren“. Die Berechnung solcher hochkomplizierten, großen Moleküle unter Einbeziehung von relativistischen Effekten wurde durch das in Mülheim entwickelte Quantenchemie-Programmpaket ORCA möglich gemacht, welches weltweit von mehr als 50000 Chemikern intensiv genutzt wird. 

Die Wissenschaftler aus Mülheim haben mit ihrer Arbeit den „chemischen Steckbrief“ von Bismut um einen wichtigen Punkt ergänzt. Wie man solche Eigenschaften im Design von neuartigen Katalysatoren nutzen kann, wird sicherlich Gegenstand zukünftiger Forschungsarbeiten sein.

Fakten, Hintergründe, Dossiers
  • Magnetismus
  • Quantenchemie
Mehr über MPI für Kohlenforschung
  • News

    Wie wollen wir in Zukunft heizen?

    Die Frage des richtigen Heizens wird in Zeiten knapper Ressourcen und vor allem vor dem Hintergrund der Erderwärmung immer wichtiger und wird momentan hefig in den Medien diskutiert. Hat die alte Ölheizung noch eine Zukunft und wenn ja, kann man sie mit effizienten, nachhaltigen Brennstoffe ... mehr

    Neue Methode zur Menthol-Synthese

    Sowohl Menthol als auch Cannabinoide sind für die Industrie wichtige Wirkstoffe. Ein Team um Prof. Dr. Benjamin List hat jetzt eine neue Methode für eine effiziente, kostengünstige Synthese für diese Substanzen entdeckt. Wir kennen es aus der Zahnpasta, es kommt in Medikamenten gegen Erkält ... mehr

    Neues zu anti-Markownikow Produkten

    Wladimir Wassiljewitsch Markownikow war ein russischer Chemiker, der im 19. Jahrhundert gelebt hat und unter anderem an den Universitäten St. Petersburg, Odessa und Moskau arbeitete. Auf ihn geht die sogenannte Markownikow-Regel zurück. Diese besagt, dass bei der Anlagerung von Wasserstoffs ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für Kohlenforschung

    Das Institut wurde im Jahr 1912 als Kaiser-Wilhelm-Institut für Kohlenforschung in Mülheim an der Ruhr gegründet. Es ist seit 1949 ein Max-Planck-Institut mit dem Status einer selbständigen rechtsfähigen Stiftung. Das Institut betreibt Grundlagenforschung auf den Gebieten organische und met ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Feinstaub katalysiert oxidativen Stress in der Lunge

    Laut einer neuen Studie eines Forschungsteams des Max-Planck-Instituts für Chemie (MPIC) sind die gesundheitsschädlichen Auswirkungen von Feinstaub eher auf die Umwandlung von Peroxiden in reaktivere Spezies wie Hydroxyl-Radikale (OH) zurückzuführen als auf direkte chemische Bildung von Was ... mehr

    Mit Ameisensäure zur CO₂-Neutralität

    Neue, synthetische Stoffwechselwege zur CO2-Fixierung könnten zukünftig nicht nur dazu beitragen, den CO2-Gehalt der Atmosphäre zu senken, sondern auch traditionelle Herstellungsverfahren für Pharmazeutika und Wirkstoffe durch kohlenstoffneutrale, biologische Prozesse ersetzen. Eine neue St ... mehr

    Mit Ammoniak zu grünem Stahl

    Die Stahlindustrie ist weltweit der größte einzelne Verursacher von CO2-Emissionen. Sieben Prozent beträgt ihr Anteil am weltweiten Treibhausgasausstoß. Und die Menge an produziertem Stahl dürfte der internationalen Energieagentur zufolge sogar von heute knapp zwei Milliarden Tonnen auf bis ... mehr

  • Videos

    Katalysatoren - Multitalent Katalysator

    Kaum ein Prozess in der chemischen Industrie läuft ohne Katalysatoren. Sie beschleunigen chemische Reaktionen und helfen so, Energie zu sparen und unerwünschte Nebenprodukte zu vermeiden. Viele Reaktionen werden durch Katalysatoren aber auch praktisch erst möglich. mehr

    STED - Lichtblicke in die Nanowelt

    Details die enger als 200 Nanometer beieinander liegen, können mit optischen Mikroskopen nicht mehr unterschieden werden – das entspricht in etwa dem Zweihunderdstel einer Haaresbreite. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspr ... mehr

    Tuning für Brennstoffzelle

    Die Brennstoffzelle kann klimaschonenden Strom erzeugen, vor allem wenn sie mit Wasserstoff aus regenerativen Quellen wie etwa aus Biomasse betrieben wird. Damit sie aber auch mit Brennstoff aus Holzabfällen oder Stroh optimal arbeitet, benötigt sie eine ausgeklügelte Steuerung. mehr

  • White Paper

    Die Keimzelle der Biobatterie

    Um überschüssigen Strom von Windkraft- und Solaranlagen aufzuheben sind leistungsfähige Batterien und Kondensatoren aus nachhaltigen Materialien gefragt. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr