Grüner Wasserstoff aus Solarenergie
Neuartige Solarzelle zur dezentralen Erzeugung von grünem Wasserstoff mit sehr hohem Wirkungsgrad
Weltweit arbeiten Forschende an effizienteren Methoden zur Wasserstoffproduktion. Wasserstoff könnte entscheidend dazu beitragen, den Verbrauch fossiler Rohstoffe zu reduzieren, vor allem, wenn er mit erneuerbaren Energien hergestellt wird. Bereits existierende Technologien zur Herstellung von klimaneutralem Wasserstoff sind für eine breitere Anwendung noch zu ineffizient oder zu teuer. Ein Forschungsteam der Universität Tübingen präsentiert nun die Entwicklung einer neuartigen Solarzelle mit bemerkenswert hohem Wirkungsgrad. Sie ermöglicht eine dezentrale Herstellung von grünem Wasserstoff und hat das Potenzial für Anwendungen im industriellen Maßstab. Die Ergebnisse wurden kürzlich im Fachmagazin Cell Reports Physical Science veröffentlicht.

Die photoelektrochemische Schlenk-Zelle im Sonnensimulator. Die rechteckige, graue Fläche mit schwarzer Einrahmung im Vordergrund ist die photoelektrochemische Solarzelle.
© Valentin Marquardt / Universität Tübingen
Eine Solarzelle auf Tauchgang
Wird Wasserstoff über die sogenannte Elektrolyse mit erneuerbaren Energien aus Wasser hergestellt, bezeichnet man ihn wegen der klimafreundlichen Herstellung als grünen Wasserstoff. Bei der solaren Wasserspaltung, häufig auch als künstliche Photosynthese bezeichnet, wird Wasserstoff mit Energie aus der Sonne hergestellt. Ein Forschungsteam um Dr. Matthias May vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen hat eine Solarzelle entwickelt, die integraler Bestandteil der photoelektrochemischen Apparatur ist und direkt mit den Katalysatoren für die Wasserspaltung zusammenarbeitet. Das Besondere der Tübinger Entwicklung: Ein zusätzlicher externer Stromkreis, wie etwa bei einem Photovoltaik-Solarpanel, ist nicht mehr nötig.
Dieser innovative Ansatz macht die Technologie kompakter, flexibler und potenziell kosteneffizienter. Aber mit diesem Aufbau werden auch die Anforderungen an die Solarzelle größer. "Unter Forschenden auf dem Gebiet ist die Realisierung von stabiler und effizienter photoelektrochemischer oder direkter Wasserspaltung so etwas wie der ‚heilige Gral`", sagt May.
Das Besondere am Aufbau der Solarzelle ist die hohe Kontrolle der Grenzflächen zwischen den verschiedenen Materialien. Die Oberflächenstrukturen werden hier auf einer Skala von wenigen Nanometern, also millionstel Millimetern, hergestellt und überprüft. Besonders schwierig sind kleine Kristalldefekte, die beispielsweise beim Wachstum der Solarzellenschichten entstehen. Diese verändern auch die elektronische Struktur und können damit einerseits die Effizienz und andererseits die Stabilität des Systems senken.
May ergänzt: "Insgesamt bleibt die Korrosion und somit die Langzeitstabilität der sich im Wasser befindenden Solarzelle aber die größte Herausforderung. Hier haben wir nun große Fortschritte im Vergleich zu unseren früheren Arbeiten gemacht."
Der technische Aufbau der neuen Zelle ist innovativ und besonders wirkungsvoll zugleich. Die Effizienz der solaren Wasserspaltung wird in Form des Wirkungsgrades gemessen. Der Wirkungsgrad zeigt dabei an, wieviel Prozent der Energie des Sonnenlichts in nutzbare Energie des Wasserstoffs (Heizwert) umgewandelt werden kann. Mit einem Wirkungsgrad von 18% präsentiert das Forschungsteam den zweithöchsten je gemessenen Wert für die direkte solare Wasserspaltung und sogar einen Weltrekord, wenn man die Fläche der Solarzelle berücksichtigt. Die ersten etwas höheren Wirkungsgrade für die Solare Wasserspaltung wurden 1998 mit 12% vom NREL in den USA präsentiert. Erst 2015 folgte der Sprung auf 14% (May et al.) und 2018 auf 19% (Cheng et al).
Anwendung in großem Maßstab denkbar
Dass die Technologie kommerzialisierbar ist, zeigen inzwischen mehrere Ausgründungen an anderen Universitäten mit deutlich geringeren Effizienzen. Erica Schmitt, Erstautorin der Studie, erklärt: "Was wir hier entwickelt haben, ist eine Technologie der solaren Wasserstofferzeugung, die keine leistungsstarke Anbindung an das Elektrizitätsnetz erfordert. Dadurch sind auch dauerhafte kleinere Insellösungen zur Energieversorgung denkbar."
Die Tübinger Arbeiten sind eingebettet in das Verbundprojekt H2Demo, an dem unter anderem das Fraunhofer Institut für Solare Energiesystem (ISE) beteiligt ist. Die nächsten Schritte umfassen die Verbesserung der Langzeitstabilität, den Transfer auf ein kostengünstigeres Materialsystem auf Siliziumbasis und die Skalierung auf größere Flächen. Die Forschungsergebnisse könnten einen bedeutenden Beitrag zur Energieversorgung und zur Reduzierung von CO2-Emissionen leisten.
Originalveröffentlichung
Originalveröffentlichung
Erica A. Schmitt, Margot Guidat, Max Nusshör, Anna-Lena Renz, Kristof Möller, Marco Flieg, Daniel Lörch, Moritz Kölbach, Matthias M. May; "Photoelectrochemical Schlenk cell functionalization of multi-junction water-splitting photoelectrodes"; Cell Reports Physical Science
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

Hoffnung auf revolutionären Hochtemperatur-Supraleiter lebt fort - Berechnungen der TU Wien zeigen: Neuentdecktes Material LK-99 hat tatsächlich Eigenschaften, die für Supraleitung vorteilhaft sein könnten.

INOMETA GmbH - Herford, Deutschland

Den magischen Zahlen der Quantenmaterie mit kalten Atomen auf der Spur - Internationales Forscherteam bestimmt die topologische Zahl eines künstlichen Festkörpers in extremen Magnetfeldern

Der schnellste Muffelofen der Welt ergibt minutenschnell den Aschegehalt und die Sulfatasche
BASF erwartet Konkurrenz durch chinesische Chemiekonzerne

LANXESS investiert in Produktionsstandort Antwerpen - Rund 25 Millionen Euro Investitionen in 2017
Spekulationen bestätigt: Bayer buhlt um Monsanto

Klimabilanz 2018: 4,5 Prozent weniger Treibhausgasemissionen - Umweltbundesamt legt erste detaillierte Schätzung vor
Linde-Tochter Cryostar erhält Auftrag über mehr als 50 Millionen US-Dollar

Tariferhöhungen der chemischen Industrie liegen oberhalb des Durchschnitts - Tarifbilanz: 2017 stiegen die Tariflöhne
