Vom Schadstoff zum wertvollen chemischen Produkt

Forscher haben aufgedeckt, wie Bakterien mithilfe zweier nickelhaltiger Enzyme das Treibhausgas CO2 in energiereiche organische Verbindungen umwandeln

05.08.2025
AI-generated image

Symbolbild

In zwei Studien, die gerade im Fachjournal Nature Catalysis erschienen sind, zeigen die Forschungsteams wie die beiden nickelhaltigen Enzyme Kohlenmonoxid-Dehydrogenase (CODH) und Acetyl-CoA-Synthase (ACS) Kohlendioxid in aktivierte Essigsäure umwandeln. Diese detaillierten Einblicke in den Mechanismus liefern neue Ansätze für die Entwicklung synthetischer Katalysatoren, die CO2 als Rohstoff nutzen könnten.

Zwei Enzyme – wie Strukturänderungen die Reaktion steuern

Die Untersuchungen konzentrieren sich auf zwei Enzyme, in denen Nickel- und Eisen-Ionen auf einzigartige Weise in den aktiven Zentren verknüpft sind: CODH und ACS. Diese Enzyme arbeiten Hand in Hand, um CO₂ zunächst in Kohlenmonoxid (CO) und anschließend in Acetyl-CoA, eine aktivierte Essigsäure, umzuwandeln. Diese Reaktionskette ist ein wesentlicher Bestandteil des sogenannten Wood–Ljungdahl-Wegs, einem der ältesten biologischen Prozesse zur Kohlenstofffixierung. In einer Studie zeigten die Wissenschaftler der Humboldt-Universität, in Kooperation mit Wissenschaftlern der TU Berlin, dass das Nickel-Ion im aktiven Zentrum der CODH nicht nur CO₂ bindet, sondern auch die für die Reaktion benötigten Elektronen bereitstellt. Diese Flexibilität macht das Nickel-Ion zum Schlüsselelement in der CO₂-Umwandlung. Mithilfe einer Kombination aus Röntgendiffraktion und Spektroskopie an Enzym-Kristallen gelang es erstmals, alle katalytisch relevanten Zustände mit den gebundenen Reaktionspartnern im Enzym mit atomarer Auflösung sichtbar zu machen.

„Seit unserer ersten Struktur der Ni-haltigen Kohlenmonoxid-Dehydrogenasen im Jahr 2001 fragte ich mich, wozu diese Enzyme Ni-Ionen benötigen. Erst unsere neuen Arbeiten geben eine Antwort darauf, die in der ungewöhnlichen Koordination des Nickels liegt“ sagt Prof. Holger Dobbek, Leiter der Arbeitsgruppe Strukturbiologie und Biochemie der Humboldt-Universität zu Berlin. Und Yudhajeet Basak der Erstautor der Studie ergänzt „Indem wir die uralten Mechanismen der CO2-Fixierung verstehen, können wir sie auf die Entwicklung neuartiger Katalysatoren übertragen, die den Übergang zu einer kohlenstoffneutralen Industrie beschleunigen könnten.“

In einer komplementären Studie unter der Leitung von Prof. Petra Wendler von der Universität Potsdam wurde untersucht, wie die Bindung kleiner Moleküle am Nickelzentrum der ACS großräumige Strukturänderungen im Enzym auslöst. Durch hochauflösende Kryo-Elektronenmikroskopie konnten die Forschenden sechs bislang unbekannte Zwischenzustände des Enzyms sichtbar machen. Die Ergebnisse zeigen, dass die Enzyme nicht starr arbeiten, sondern dass Ligandenbindungen dynamische Bewegungen auslösen, die den Ablauf der Reaktion steuern.

Relevanz für Klimaschutz und nachhaltige Chemie

Die Erkenntnisse haben nicht nur für die Grundlagenforschung Bedeutung. Sie könnten auch einen Weg aufzeigen, wie sich biologische Katalyse-Prinzipien auf technische Prozesse übertragen lassen. Künftig könnten synthetische Katalysatoren, die nach dem Vorbild dieser Enzyme entwickelt werden, CO₂ effizient in wertvolle chemische Produkte umwandeln – ein wichtiger Beitrag zu einer nachhaltigeren Kreislaufwirtschaft.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...