Meine Merkliste
my.chemie.de  
Login  

Minerale und Erze im chemischen Fotolabor

Einzigartige Röntgenfarbkamera zur Analyse von Elementen startet Routinebetrieb

15.10.2013

Eine einzigartige Röntgenfarbkamera geht heute im Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in den Routinebetrieb. Damit können die Forscher des zum HZDR gehörenden Helmholtz-Instituts Freiberg für Ressourcentechnologie (HIF) künftig in sehr kurzer Zeit die Konzentrationen sehr fein verteilter Metalle, wie die Elemente der Seltenen Erden, in Erzmineralen bestimmen. Den Beginn des Routinebetriebs feiern die Wissenschaftler heute mit Kollegen, Partnern und Firmen, die am Aufbau der Kamera beteiligt waren. Sie wurde eigens für die analytischen Anforderungen des Instituts entwickelt.

„Wir wollen unsere Röntgenfarbkamera vor allem zur Analyse von Spurenelementen wie den Seltenerd-Elementen nutzen“, sagt der Leiter der Arbeitsgruppe Ionenstrahlanalytik am HIF, Dr. Axel Renno. Diese Elemente sind sehr fein verteilt, kommen meist nur in kleinen Mengen vor und sind aber für bestimmte Anwendungen sehr wichtig. Dazu gehören Elemente wie Neodym, welches man zur Herstellung stärkster Magnete in Windkraftanlagen braucht, oder Cer, das in Form von Cerdioxid für Katalysatoren, Sonnencremes oder Medizinpräparate eingesetzt wird. Seltene Erden sind ein Schwerpunkt am Helmholtz-Institut Freiberg für Ressourcentechnologie; die Forscher kümmern sich sowohl um die Gewinnung der Rohstoffe aus dem Erz als auch um das Recycling der wertvollen Ressourcen aus ausgedienten Produkten wie Energiesparlampen. Neben den Seltenerd-Elementen gibt es noch seltener vorkommende Stoffe, die sogenannten Ultraspurenelemente. Sie spielen eine wichtige Rolle, um die Prozesse bei der Bildung von Rohstofflagerstätten aufklären zu können. Die Analyse dieser Elemente soll ein weiterer Fokus der Messungen an der Röntgenfarbkamera sein.

Das Gerät hat wie eine Fotokamera einen Detektorchip; hinzu kommt eine Spezialoptik für die Röntgenstrahlung. Es analysiert genau die chemische sowie räumliche Zusammensetzung einer Probe. „Der Vorteil ist, dass wir Stoffe nun deutlich schneller analysieren können als mit ähnlichen Methoden“, so Axel Renno. So könne sich die Untersuchung einer mineralischen Probe von einem Tag auf eine Stunde verringern. Das ist möglich, weil die Probe nicht nach und nach „abgetastet“, sondern auf einmal komplett beleuchtet und untersucht wird.

Zuerst wird ein Protonenstrahl – also schnelle, positiv geladene Teilchen aus dem großen Ionenbeschleuniger, den das HZDR betreibt – gleichmäßig auf eine Probe gelenkt. Wenn die Protonen auf die Probe treffen, entsteht Röntgenstrahlung. Sie ist für jedes Element, das in der Probe enthalten ist, charakteristisch und wird von der Röntgenfarbkamera aufgenommen. Dadurch wissen die Forscher, aus welchen chemischen Elementen die Probe besteht. Auf einem Bildausschnitt mit einer Seitenlänge von je 12 Millimetern werden dabei 70.000 Bildpunkte gleichzeitig erfasst. Ein optisches Bild entsteht durch eine Speziallinse für die Röntgenstrahlung: Dafür wurde eine Kapillaroptik aus hauchdünnen Glasröhrchen entwickelt; sie ordnet jeden Röntgenstrahl auf der Probe den Bildpunkten zu.

Die Röntgenfarbkamera am HZDR wurde durch das BMBF in der Fördermaßnahme „r3 – Strategische Metalle und Mineralien“ gefördert. Sie ist eine der wenigen Apparate weltweit, mit der man die räumliche Verteilung von Spurenelementen wie den Seltenerd-Elementen schnell untersuchen kann. Einzigartig ist allerdings, dass sie mit einem Protonenstrahl aus einem Ionenbeschleuniger, wie das HZDR ihn hat, betrieben wird. Die Kamera wurde speziell für diese Zwecke angepasst. „Für ihre Unterstützung und ihr Knowhow bedanken wir uns bei unseren Kollegen der Bundesanstalt für Materialforschung und -prüfung und des HZDR sowie bei den beteiligten Unternehmen: dem Institute for Scientific Instruments GmbH, der PN Sensor GmbH, der DREEBIT GmbH und der TSO Thalheim Spezialoptik GmbH“, so Renno.

Bisher wurden Kameras dieser Art an noch größeren Beschleunigeranlagen, sogenannten Synchrotrons, betrieben. Das Helmholtz-Institut Freiberg (HIF) beschäftigt sich im Rahmen des BMBF-Projektes MEGA damit, die Technologie für die Bedingungen in Bergwerken und Aufbereitungsanlagen anzupassen. „Wir setzen also die Vorteile der Analytik mit Ionenstrahlen, wie wir sie in Dresden betreiben, für die Analyse von Rohstoffen ein“, sagt Renno. Moderne, ortsaufgelöste analytische Methoden sind eine wichtige Grundlage, um effizientere Rohstofftechnologien, wie sie am HIF erforscht werden, zu entwickeln.

Fakten, Hintergründe, Dossiers
  • Erze
  • Neodym
  • Helmholtz-Zentrum D…
Mehr über Helmholtz-Zentrum Dresden-Rossendorf
  • News

    Ein neuer Dreh für die Nano-Elektronik

    In den vergangenen Jahren kannte die Entwicklung in der elektronischen Datenverarbeitung nur eine Richtung: Die Industrie verkleinerte die Bauteile bis in den Nanometerbereich. Doch langsam stößt dieser Prozess an eine physikalische Grenze. Forscher des Helmholtz-Zentrums Dresden-Rossendorf ... mehr

    Laser erzeugt Magnet – und radiert ihn wieder aus

    Mit einem Laserstrahl in einer Legierung magnetische Strukturen zu erzeugen und anschließend wieder zu löschen – das gelang Forschern vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Kooperation mit dem Helmholtz-Zentrum Berlin (HZB) und der Universität von Virginia in Charlottesville, US ... mehr

    Energiewende könnte Bedarf an kritischen Metallen erhöhen

    Wenn ein Rohstoff fehlt, kann dies ganze Industrien empfindlich treffen. Seit rund zehn Jahren wird deshalb stark in die Erforschung von Hochtechnologiemetallen investiert, bei deren Versorgung es viele Risiken gibt und die deshalb als kritisch gelten. Wissenschaftler aus dem Helmholtz-Inst ... mehr

  • Forschungsinstitute

    Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V.

    Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) leistet langfristig ausgerichtete Spitzenforschung auf den Gebieten Energie, Gesundheit und Materie. In strategischen Kooperationen mit nationalen und internationalen Partnern bearbeiten wir neue, für die moderne Industriegesellschaft drängend ... mehr

Mehr über Helmholtz-Gemeinschaft
  • News

    Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

    Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden. In den letzten Jahren konnten Solarzellen auf der Basis von Metall-Halid Perows ... mehr

    Helmholtz will Kontakte zu israelischen Forschern und Start-ups knüpfen

    (dpa) Deutschland und Israel hatten Anfang des Monats beschlossen, die wissenschaftliche Zusammenarbeit auszubauen - jetzt eröffnet die Helmholtz-Forschungsgemeinschaft ein Auslandsbüro in Tel Aviv. Damit will Helmholtz Kontakte zu israelischen Forschern und Start-ups knüpfen. Helmholtz ist ... mehr

    Rückenwind für Gründer

    Mit Meeres-Chemie Knochenschwund schneller erkennen, Lastenräder mit leistungsfähigen Brennstoffzellen ausrüsten oder die Energieeffizienz-messung von Gebäuden vereinfachen – dies sind drei der insgesamt sechs neuen Geschäftsideen, die für das Förderprogramm „Helmholtz Enterprise“ ausgewähl ... mehr

  • Videos

    Die Batterie der Zukunft

    Am Karlsruher Institut für Technologie, einem Zentrum der Helmholtz-Gemeinschaft entwickeln Maximilian Fichtner und sein Team die Batterie der Zukunft. Dafür experimentiert er mit neuen chemischen Kombinationen. Mithilfe der Fluorid-Ionen-Technik sollen künftige Batterien deutlich mehr Ener ... mehr

  • Forschungsinstitute

    Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.

    Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen. Sie ist mit 30.000 Mitarbeiterinnen und Mitarbeitern in 16 Forschungszentren und einem Ja ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.